PCSIM Tutorial Exercises

FIAS Theoretical Neuroscience Summer School 2008

Dejan Pecevski
Institute for Theoretical Computer Science
Graz University of Technology
A-8010 Graz, Austria

{dejan@igi.tugraz.at }

August 7, 2008

Introduction

The exercises explain the most basic commands and classes in PCSIM and their
usage, through some typical examples. They are split in multiple parts, with
the subsequent parts modifying and extending the models in the previous parts.
NOTE: Please copy the current script with a new name when you start a new
part of the exercise, and preserve the script for each part, as you will need it
afterwards.

At the end of this document, there is a short reference of PCSIM commands
and classes with all information needed to perform the operations required in
the steps of the exercises. In the exercises’ steps there are many references
to some PCSIM constructs without full explanation on how to use them, so
please consult the short reference for when you need additional explanations and
examples related to the particular class/command. The items in the reference
are not in alphabetical order.

Exercise 1. Small Models Composed of Several
Neurons

In the first part of the exercise you will create one leaky integrate-and-fire (LIF)
neuron receiving spiking inputs from 10 input neurons firing a Poisson con-
stant rate process, simulate the model, and plot the spikes and the membrane
potential of the neuron.

In the second part you will examine how the firing rate of the LIF neuron
depends on the firing rates of its input neurons.

Part 1. Construct and simulate the model

Step 1:

Step 2:

Create a new file to edit the first part of exercise 1 (e.g. ex1_partl.py).

Import the necessary Python packages for this exercise and create

the empty PCSIM network object with the following code

from pypcsim import *
from numpy import *
from pylab import *

net =

Step 3: Create 10 Poisson input neurons (see reference for class PoissonInputNeuron

SingleThreadNetwork()

and net.create command). Set the firing rate for the input neurons to 5 Hz.

Step 4: Create one leaky integrate-and-fire (LIF) neuron LifNeuron.
Use the following parameters for the LIF neuron:

| Parameter | Value | Description |
Rm 1030 membrane resistance R,,
Cm 3-10710F membrane capacitance C,,
Vresting —0.07V resting potential Viesting
Vreset -0.07V reset potential Vi eget
Vthresh —0.06 V threshold potential Vipresh
Vinit -0.07V initial membrane potential V;,;¢
Trefract | 5-1073s refractory period Trefract
Step 5: Connect each of the input neurons to the LIF neuron LifNeuron

with a StaticSpikingSynapse synapse. The command net.connect creates a
connection between two neurons.
The parameters of the synapses should be set to:

Parameter Value Description
tau 5-1073%s | synapse time constant
delay 1-1073 s | delay of the connection
W 1-10710 A synaptic weight

To iterate through the list of IDs of the input neurons, returned by net.create,
we will need to create a Python loop. Below is an example for a simple for loop
in Python. Be careful, in Python every code line that is within the loop has to
be indented by <tab> from the head line of the loop.

Iterates and prints the elements
of a python sequence (list,tuple etc.).
for i in L:

print i

See http://docs.python.org/tut/nodeb.html#firststeps, and
http://docs.python.org/tut/node6.html for more info about loops in Python.
More information on manipulation of lists in Python can be found at
http://docs.python.org/tut /nodes.html#lists

Step 6: Setup two recorders to record the spike times and the membrane
potential of the neuron with net.record.

Step 7: Run the simulation for 1 second with net.simulate.

Step 8: Plot the spike and the membrane potential using the following mat-
plotlib code (the spike list is assumed to be in the variable recorded_spikes,
and the membrane potential in the variable recorded_vm):

plot the spikes

figure(1, figsize = [8,3])

plot(recorded_spikes, zeros(len(recorded_spikes)), ’|’,
markersize=50)

x1im(0,1)

plot the membrane potential
figure(2)

plot(arange(0,1,1e-4), recorded_vm)
x1im(0,1)

Step 9: Adjust the weight of the synapse so that the firing rate of the neuron
will be around 10 Hz.

Step 10: Run the script with the command
$ ipython -pylab myscript.py

Part 2. Output Firing Rate / Input Firing Rate Depen-
dency

The goal of part 2 of the exercise is to plot a curve for the dependency of the
output firing rate of the LIF neuron in the previous experiment on the firing

http://docs.python.org/tut/node5.html#firststeps
http://docs.python.org/tut/node6.html
http://docs.python.org/tut/node5.html#lists

rate of the input neurons. Run the experiment in the previous part for different
values of the firing rate of input neurons in the range from 0 to 200 Hz (with a
step of 1 Hz). For each run calculate the firing rate of the LIF neuron, and plot
a curve depicting this dependency.

Step 1: To perform the experiment several times we will need to put the code
from the creation of the network to the retrieval of the results within a Python
FOR loop.

A list with the first N non-negative integers in Python can be constructed
with range (N). For example,

>>> L = range(10)
>>> print L
[O’ 1’ 2) 3) 4’ 5) 6’ 7) 8) 9]

To iterate through the values of a list you can use the Python example in
the previous part.

Also change the simulation time to 10 seconds, for better estimation of the
average firing rate of the LIF neuron.

Change the initialization of the the input rate in the constructor of the
Poisson input neurons with the current rate variable within the loop.

Step 2: Add a code for the calculation of the firing rate of the LIF neuron
at the end of the body of the loop. Calculate it as the number of spikes in
the output divided by the simulation time. The length of a Python list can be
retrieved with the function len(L).

Step 3: In order to plot the curve, we need to preserve the output firing rates
for the different runs in a Python list. Use the L.append(element) for that to
append the values to the list. Creation of an empty list at the beginning can be
done with L = []. More information on manipulation of lists in Python can be
found at http://docs.python.org/tut/nodeb.html#lists

Step 4: Plot the curve with the following matplotlib code. The rates variable
represents the list of the output firing rates. The max_rate is the maximum

input firing rate for which the experiment was performed.

plot(range(max_rate), rates)

http://docs.python.org/tut/node5.html#lists

Exercise 2. Random Balanced Network with Ex-
citatory and Inhibitory Populations

In this exercise you will construct a randomly connected recurrent neural net-
work composed of 1000 LIF Neurons, where 80% of them are excitatory and
20% inhibitory. The neurons should be connected with current based synapses
with exponentialy decaying synaptic response (type StaticSpikingSynapse),
with random connection probability of p = 0.1. The input to the network will
be composed of 100 Poisson input neurons (type PoissonInputNeuron) project-
ing random connections to the recurrent network with probability pinpw: = 0.1.
After performing the simulation you will print the spike raster of the network
activity, and some other number figures about the activity.

Part 1. Construct and Simulate the Random Network

Step 1: Create a new script for this exercise e.g. exercise2.py. At the
beginning add several Python packages that will be necessary, and construct an
empty PCSIM Network.

from pypcsim import *
from pypcsimplus import *
from numpy import *

from pylab import *

net = SingleThreadNetwork()

Step 2: Create two populations of LIF Neurons (type LifNeuron), one

excitatory and one inhibitory with the appropriate number of neurons. See

SimObjectPopulation class in the short PCSIM reference on how to do that.
Use the following parameters for the LIF neuron:

| Parameter | Value | Description |
Rm 1030 membrane resistance R,,
Cm 2-10710F membrane capacitance C,,
Vresting —0.06 V resting potential Viesting
Vreset —0.06 V reset potential Vi eget
Vthresh —0.05V threshold potential Vipresh
Vinit —0.06 V initial membrane potential V;,;+
Trefract | 3-1073s refractory period Tyefract

Step 3: Construct a new population composed of the already created neurons
in both populations. We will need this population for easier construction of the
connections and setup of the recordings. Use list(SimObjectPopulation.idVector())

statement to get a python list of the IDs of the objects in the excitatory and in-
hibitory populations, concatenate the two lists (in Python: L = L1 + L2), and
then to create the new population use the constructor of SimObjectPopulation
which accepts a list of IDs of already created objects in the network. See more
info about the SimObjectPopulation class in the short PCSIM reference.

Step 4: Because we will use different parameters for the synapses connecting
depending whether the synapse has a excitatory or inhibitory presynaptic neu-
ron, the synaptic connections from the excitatory neurons to all neurons should
be created with a separate projection (type ConnectionsProjection).

Make a projection from the excitatory population to the population with all
neurons, with random connections (0.1 connectivity probability). You can find
more info about ConnectionsProjection in the short PCSIM reference. Use
the StaticSpikingSynapse synapse type with the following parameters

Parameter Value Description
tau 5-1073 s synapse time constant
delay 1-1073s delay of the connection
W 1.62-1071 A synaptic weight
Step 5: Make a projection from the inhibitory population to the population

with all neurons, with random connections (0.1 connectivity probability). Use
the StaticSpikingSynapse synapse type with the following parameters

Parameter Value Description
tau 10-1073 s synapse time constant
delay 1-1073 s delay of the connection
W —10-107 A synaptic weight

Step 6: Create an input population of 100 Poisson input neurons (type
PoissonInputNeuron) Connect the input population to the network with ran-
dom connections (p = 0.1), and excitatory StaticSpikingSynapses synapse
types with following parameters

Parameter Value Description
tau 10-10 3 s synapse time constant
delay 1-1073% s delay of the connection
W 1.2-1071 A synaptic weight

Step 7: Create a recorder population for the recording of spiking times of
all neurons in the network. Use the SimObjectPopulation.record method for
that.

Step 8: Simulate the network for 1 second.

Step 9: Retrieve the spike times from all neurons. Create a list of numpy
arrays, where each array holds the spike times of one neuron. The following
code will perform that (popul is the variable of the neuron population) :

spikes = [array(popul.object(i).getRecordedValues())
for i in range(popul.size())]

Step 10: To plot the spike raster we will use the function create raster
from the extra pcsim package pypcsimplus. This function creates list of x and
y coordinates from the spike times and neuron IDs, which are then ready to be
used in the plot command.

create_raster(spikes,0,Tsim)
plot(x, y, ’>.”)

Step 11: To get familiar with the common operations with numpy arrays in
Python, try to calculate the following figures from the spiking activity:

e The mean firing rate in the network
e The mean inter-spike interval for all neurons

e The mean coefficient of variation

Part 2. Random Distributions for Parameter Values

In this part you will modify the previous model by specifying random distri-
butions that are to be used for the generation of parameter values during the
creation of neurons within a population, or synapses within a projection. You
will use the SimObjectVariationFactory to achieve this.

Step 1: Change the neuron model in the creation of the populations with a
variation factory where the Vinit parameter of the neuron is set to a bounded
normal distribution with mean m = —55 mV and deviation 0.1 times the mean,
with bounds set to [—-60mV, —50mV]. See the reference for BndNormalDistribution
and SimObjectVariationFactory classes.

Step 2: Change the synapse model in the creation of the projections with
a variation factory, and set the weights of the synapses to change according to
a bounded gamma distribution with mean the previous constant value of the
weight and standard deviation equal to 0.1 of the mean, within the interval be-
tween 0 and twice the mean value. See the reference for BndGammaDistribution.

Step 3: Run the two models, with and without randomly distributed param-
eters, and compare the spiking activity.

Part 3. Spatial Networks and Distance-based Random Con-
nections

In this part you will further modify the model by introducing 3D coordinates for
the neurons with the SpatialFamilyPopulation class. Then you will change
the synaptic connections generation from random with fixed probability, to ran-
dom with distance dependent probability, where the probability to make a con-
nection between two neurons will depend on their distance according to the
formula

p:C~87D2/)‘2

where D is the distance between the two neurons.

Step 1: Replace the creation of the populations in the previous model, by cre-
ating one SpatialFamilyPopulation where the neurons will be located on a 3D
grid with integer coordinates, within a volume (20x10x5) (CuboidIntegerGrid3D).
The population should have two families with the same neuron model used for
both of them. The ratio of number of neurons in the two families should be
specified with the RatioBasedFamilies class. Then split the population in two
subpopulations corresponding to the two families
(SpatialFamilyPopulation.splitFamilies method).

Step 2: Change the creation of the projections to use distance based random
connections. Replace the RandomConnections connection iterator in the con-
structor of the projections, with the

EuclideanDistanceRandomConnections class. Use the following parameters
in the constructor of EuclideanDistanceRandomConnections: C' = 0.1 and
A =10.

Step 3: Run the model and plot the spiking activity.

Exercise 3. Models with Spike-Timing-Dependent
Plasticity

In the following exercise you will modify the model from exercise 1, part 1 to
include spike-timing-dependent plasticity in the synapses. You will also plot the
evolution of the synaptic weight during the simulation of one of the synapses,
and the histogram of the synaptic weight values at the beginning and at the end
of the simulation.

Step 1: In the model replace the StaticSpikingSynapse synapse type with
the StaticStdpSynapse type. Go to the following link in the PCSIM C++
class reference online for more info on this synapse model: click here
http://www.lsm.tugraz.at /pcsim/cppclassreference/
html/classStaticStdpSynapse.html# _details

Use the following parameters for the synapse

[Parameter T Value T Description

Winit 1.10 11 A initial synaptic weight

tau 5.1073 s synaptic time constant

delay 1-1073 s conduction delay

useFroemkeDanSTDP False whether to use adjacent spike depression

Apos 2.10713 A Amplit. of the positive part of the STDP window
Aneg —2.2.10713 A Amplit. of the negative part of the STDP window
taupos 30-1073 s time constant of the positive part of the STDP window
tauneg 301073 s time constant of the negative part of the STDP window
mupos 0.0 exponent for the STDP potentiation
muneg 0.0 exponent for the STDP depression

Wex 2.10" 11 A upper hard bound of the weights (2 times the initial weight)

Step 2: Change the number of input neurons to 100, and the simulation time
to 100 seconds. Be sure that duration parameter of the PoissonInputNeuron
input neurons is not smaller than the simulation time.

Step 3: Setup a SimObjectPopulation for the synapses. First create a
python list of the IDs of the created synapses. net.connect returns the ID of the
created synapse.

From this list of IDs create a SimObjectPopulation (see the short PCSIM
reference).

Step 4: Then create a population of analog recorders to record the parameter
"W?” of the synapses. Since the synaptic weight is a typically slow changing
value, we don’t need to record the value at each time step, instead we will
record each 1000 time steps (each 0.1 seconds). This is achieved by specifying
AnalogRecorder (samplingTime = 1000) as a recorder.

Step 5: After the simulation create a list of numpy arrays of the recorded
weight values, in the same way as for the spikes in the previous exercise.

http://www.lsm.tugraz.at/pcsim/cppclassreference/html/classStaticStdpSynapse.html#_details

weights = [array(popul.object(i).getRecordedValues())
for i in range(popul.size())]

and then convert it to a two-dimensional numpy array

weights = vstack(weights)

Step 6: Plot the recorded weight of the first synapse (weights[0]).

Step 7: Plot the histogram of the weights at the beginning and at the end
of the simulation, with the following code:

plot a histogram of the weights at
the beginning of the simulation
figure(2)

subplot(2,1,1)

hist(weights[:,0])

plot a histogram of the weights at
the end of the simulation
subplot(2,1,2)

hist(weights[:,-1])

10

Short reference to commonly used PCSIM com-
mands and classes

e net.create

Creates one or an array of PCSIM objects (e.g. neurons). Example:

create one neuron, returns the ID of the
created neuron
nrnl = net.create(LifNeuron(Rm = 1e8))

create 10 neurons, returns a list of neuron IDs
nrn2 = net.create(LifNeuron(Rm = 1e8), 10)

e net.connect

Connects two neurons with a specified synapse type. Usage example:

Connects the neuron with ID nrnl to the neuron
with ID nrn2 with a static current-based synapse
net.connect(nrnl, nrn2, StaticSpikingSynapse(tau = 3e-3))

e net.record

Setup a recorder to record spikes or analog signals from a neuron/synapse
(or other PCSIM object). Example:

Create a recorder to record the spikes of a neuron.
Returns the ID of the recorder.
spike_rec = net.record(nrn, SpikeTimeRecorder())

Create an analog recorder to record the membrane
potential of the neuron. Returns the ID of the recorder.

vm_rec = net.record(nrn, "Vm", AnalogRecorder())

Record the weight of a plastic synapse
w_rec = net.record(syn, "W", AnalogRecorder())

e net.simulate

Simulates the network. Example:

11

simulate for 3.5 seconds.
net.simulate(3.5)

e LifNeuron

The description of the LIF neuron model can be found in the PCSIM C++
class reference documentation at
http://www.lsm.tugraz.at/pcsim/cppclassreference/html/classLifNeuron.html# _details.

You can also see the list of all parameters that you can set for the neu-
ron, and their default values under the section Constructor & Destructor
documentation below the description of the model.

e PoissonInputNeuron

Input neuron which emits spikes obeying a homogenous Poisson process
with a specific rate and duration. If you want the neuron to output spikes
during the whole simulation then set the duration larger than the simula-
tion time.

Example:

Create a poisson input neuron firing at rate 10 Hz for

the duration of 10 seconds.

nrn = net.create(PoissonInputNeuron(rate = 10,
duration = 10))

e StaticSpikingSynapse
The StaticSpikingSynapse class implements a current-based synapse

with an exponentially decaying postsynaptic response, i.e. the dynamics
of the current is defined with

di(t) i(t) k

=— +Y wot —t® —¢

dt Togn ; (delay)

where t; are the spike times of the presynaptic neuron. The parameters
names in the constructor are tau, W and delay.

e SpikeTimeRecorder

Recorder of spike times. Example:

create a SpikeTimeRecorder and attach it to neuron nrn
rec = net.record(nrn,SpikeTimeRecorder())

After simulation you obtain the

recorded values in a python list with:

values = list(net.object(rec).getRecordedValues())

12

http://www.lsm.tugraz.at/pcsim/cppclassreference/html/classLifNeuron.html#_details

e AnalogRecorder

Recorder of analog signals. Can be attached to an output analog port, or
to a field of a PCSIM object. Example:

create an AnalogRecorder and attach it to neuron
nrn’s field named "Vm" (membrane potential)

rec = net.record(nrn,"Vm", SpikeTimeRecorder())

After simulation obtain the recorded values in a
python list with:

values = list(net.object(rec).getRecordedValues())

e SimObjectPopulation

Class representing a simple (array like) population of PCSIM objects (e.g.
neurons). The objects in the population are identified by their index
number, from 0 to population_size - 1.

e Creation of SimObjectPopulation

A SimObjectPopulation can be created in two ways. The first way
is by specifying an object model, or a factory (one type of factory is
SimObjectVariationFactory), and a number of objects to be created.
For example to create population of 100 Izhikevich neurons write:

nrn_model = IzhiNeuron(Rm = 1e8, Cm = 2e-10)
popul = SimObjectPopulation(net, nrn_model, 100)

The other way to create a population is by specifying a Python list with
IDs of already created objects in the PCSIM network. For example, if
list nrns is the list of IDs then

popul = SimObjectPopulation(net, list_nrns)

e SimObjectPopulation.object, Accessing the objects in a population

13

Get the ID of the neuron from the population with index 10
nrn_id = popul[10]

The id can then be used to access the neuron object
nrn = net.object(nrn_id)

Or alternatively get the neuron object directly
from the population

nrn = popul.object(10)

Then use the neuron like a regular python object
nrn.Vresting = -0.07

e SimObjectPopulation.record, Creating a recorder population

In order to record spikes or analog signals from all the objects in a popula-
tion, a population of recorders can be created corresponding to an existing
object population. Each recorder is attached to one of the objects in the
population.Example:

create a population of recorders to record
the spikes from the neurons in a population
rec_popul = popul.record(SpikeTimeRecorder())

create a population of recorders to record
the membrane potential of the neurons in a population
rec_popul = popul.record(AnalogRecorder(), "Vm")

e SimObjectPopulation.size()

Returns the number of objects in the population

e ConnectionsProjection

Construct to create a set of synaptic connections from a source popula-
tion to a destination population (the source and destination can be the
same). The rules for creating the connections are typicaly probabilistic
and are specified by means of a ConnectionIterator class given in the
constructor of the projection. Two commonly used connection iterators
are RandomConnections and EuclideanDistanceRandomConnections.

Creating a ConnectionsProjection

Example:

14

synapse_model = StaticSpikingSynapse(w = 1e-10)

Create random connections with prob. = 0.2,

#from src_popul to dest_popul, by using previous

the synapse model

proj = ConnectionsProjection(src_popul, dest_popul,
synapse_model,
RandomConnections(0.2))

e BndNormalDistribution

A bounded normal random distribution, used commonly within
SimObjectVariationFactory to associate normal distribution to param-
eter values. See SimObjectVariationFactory for more examples. If the
generated random value does not fall within the bounds, then it’s gener-
ated from an uniform distribution within these bounds.

Example:

create a normal distribution with

mean 10, standard deviation 0.1 of its mean

and with [0,20] upper and lower bounds.

dist = BndNormalDistribution(mu = 10, cv = 0.1,
lowerBound = O,
upperBound = 20)

e BndGammaDistribution

A bounded gamma distribution, used commonly within
SimObjectVariationFactory to associate gamma distribution to param-
eter values. See SimObjectVariationFactory for more examples. If the
generated random value is larger than the upper bound, then it’s gener-
ated from an uniform distribution within 0 and the upper bound.

Example

create a gamma distribution with

mean 10, standard deviation 0.1 of its mean

and with 20 upper bound.

dist = BndNormalDistribution(mu = 10, cv = 0.1,
upperBound = 20)

e SpatialFamilyPopulation

15

Heterogenous population of objects where each PCSIM object has as-
sociated a 3D coordinate in space and a family ID. The created popu-
lation is a heterogenous population, which means that multiple PCSIM
object factories can be specified for the generation of the objects within
the population. The different object factories can populate the popula-
tion with different object types. The PCSIM objects generated from one
object factory are refered to as one family of PCSIM objects. A spe-
cial SpatialFamilyIDGenerator object used in the constructor of the
population chooses among the object factories to create an object for
each location in space. One commonly used SpatialFamilyIDGenerator
is RatioBasedFamilies. The set of 3D locations are specified with a
Point3DSet. Commonly used Point3DSet is the CuboidIntegerGrid3D.

More info on the SpatialFamilyPopulation can be found here
(http://www.lsm.tugraz.at/pesim/cppclassreference /html/
classSpatialFamilyPopulation.html#_details)

Example: Creates a population with two families of neurons, the first of
type LifNeuron and the second of type IzhiNeuron. The neurons are lo-
cated on a cuboid 3d grid with integer coordinates, of dimensions 10x5x5,
and the origin at (0,0,0). During the generation of the neurons, the prob-
ability for a neuron from the first family to be created is 0.8 (4/5), and
from the second family 0.2 (1/5). This gives an average ratio of 4:1 for
the number of the neurons in the two families.

popul = SpatialFamilyPopulation(net,
[LifNeuron(Rm = 1e8), IzhiNeuron(Rm = 1e7)],
RatioBasedFamilies((4,1)),
CuboidIntegerGrid3D(10,5,5))

SimObjectVariationFactory

Used to create objects in a population where some of the parameter values
of the objects are drawn from a random distribution during generation.

Example: The values of the conduction delay parameter of the connections
created in the projection are drawn from a normal distribution.

16

http://www.lsm.tugraz.at/pcsim/cppclassreference/html/classSpatialFamilyPopulation.html#_details

first create the synapse model
syn_model = StaticSpikingSynapse(W = 1e-10,
tau = 3e-3, delay = 1e-3)

Then create a variation factory based on the model
syn_factory = SimObjectVariationFactory(syn_model)

create the random distribution

dist = BndNormalDistribution(mu = 2e-3, cv = 0.3,
lowerBound = 1le-3 ,
upperBound = 8e-3)

associate the delay parameter of the synapse model

with the random distribution

syn_factory.set("delay", dist)

create the projection using the factory

to create the synapses

proj = ConnectionsProjection(src_popul, dest_popul,
syn_factory, RandomConnections(0.01))

e FuclideanDistanceRandomConnections

A specific ConectionIterator class used in a projection to create random
connections with distance dependent probability, i.e. the probability to
make a connection between two neurons depends on the distance between
them according to the formula

pZC-e_D2/)‘2

where D is the distance between the two neurons.

Example

con_iterator =
EuclideanDistanceRandomConnections(C = 0.1,
lambda = 3)

proj = ConnectionsProjection(popl, pop2,
synapse_model,
con_iterator)

e RandomConnections

17

A specific ConectionIterator class used in a projection to create random
connections with fixed probability. See ConnectionsProjection for an
usage example.

18

