
1

Real-Time Computing Without Stable States:

A New Framework for Neural Computation Based on Perturbations

Wolfgang Maass+, Thomas Natschläger+ & Henry Markram*

+ Institute for Theoretical Computer Science, Technische Universität Graz; A-8010 Graz, Austria

* Brain Mind Institute, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne,

Switzerland

Wolfgang Maass & Thomas Natschlaeger

Institute for Theoretical Computer Science

Technische Universitaet Graz

Inffeldgasse 16b, A-8010 Graz, Austria

Tel: +43 316 873-5811

Fax: +43 316 873-5805

Email: maass@igi.tu-graz.ac.at, tnatschl@igi.tu-graz.ac.at

Henry Markram

Brain Mind Institute

Ecole Polytechnique Federale de Lausanne

CE-Ecublens, CH-1015 Lausanne, Switzerland

Tel:+972-89343179

Fax:+972-89316573

Email:Henry.Markram@weizmann.ac.il

Address for Correspondence:

Wolfgang Maass

2

A key challenge for neural modeling is to explain how a continuous stream of multi-modal
input from a rapidly changing environment can be processed by stereotypical recurrent
circuits of integrate-and-fire neurons in real-time. We propose a new computational model
for real-time computing on time-varying input that provides an alternative to paradigms
based on Turing machines or attractor neural networks. It does not require a task-
dependent construction of neural circuits. Instead it is based on principles of high
dimensional dynamical systems in combination with statistical learning theory, and can be
implemented on generic evolved or found recurrent circuitry. It is shown that the inherent
transient dynamics of the high-dimensional dynamical system formed by a sufficiently large
and heterogeneous neural circuit may serve as universal analog fading memory. Readout
neurons can learn to extract in real-time from the current state of such recurrent neural
circuit information about current and past inputs that may be needed for diverse tasks.
Stable internal states are not required for giving a stable output, since transient internal
states can be transformed by readout neurons into stable target outputs due to the high
dimensionality of the dynamical system. Our approach is based on a rigorous
computational model, the liquid state machine, that unlike Turing machines, does not
require sequential transitions between well-defined discrete internal states. It is supported,
like the Turing machine, by rigorous mathematical results that predict universal
computational power under idealized conditions, but for the biologically more realistic
scenario of real-time processing of time-varying inputs. Our approach provides new
perspectives for the interpretation of neural coding, for the design of experiments and data-
analysis in neurophysiology, and for the solution of problems in robotics and
neurotechnology.

3

Introduction
Intricate topographically organized feed-forward pathways project rapidly changing

spatio-temporal information about the environment into the neocortex. This information is
processed by extremely complex but surprisingly stereotypic microcircuits that can perform a
wide spectrum of tasks (Shepherd, 1988, Douglas et al., 1998, von Melchner et al., 2000). The
microcircuit features that enable this seemingly universal computational power, is a mystery. One
particular feature, the multiple recurrent loops that form an immensely complicated network
using as many as 80% of all the synapses within a functional neocortical column, has presented
an intractable problem both for computational models inspired by current artificial computing
machinery (Savage, 1998), and for attractor neural network models. The difficulty to understand
computations within recurrent networks of integrate-and-fire neurons comes from the fact that
their dynamics takes on a life of its own when challenged with rapidly changing inputs. This is
particularly true for the very high dimensional dynamical system formed by a neural microcircuit,
whose components are highly heterogeneous and where each neuron and each synapse adds
degrees of freedom to the dynamics of the system.

The most common approach for modeling computing in recurrent neural circuits has been
to try to take control of their high dimensional dynamics. Methods for controlling the dynamics
of recurrent neural networks through adaptive mechanisms are reviewed in (Pearlmutter, 1995).
So far one has not been able to apply these to the case of networks of spiking neurons. Other
approaches towards modeling computation in biological neural systems are based on
constructions of artificial neural networks that simulate Turing machines or other models for
digital computation, see for example (Pollack, 1991), (Giles et al., 1992), (Siegelmann et al.,
1994), (Hyoetyniemi, 1996), (Moore, 1998). Among these there are models, such as dynamical
recognizers, which are capable of real-time computing on online input (in discrete time). None of
these approaches has been demonstrated to work for networks of spiking neurons, or any more
realistic models for neural microcircuits. It was shown in (Maass, 1996) that one also can
construct recurrent circuits of spiking neurons that can simulate arbitrary Turing machines. But
all of these approaches require synchronization of all neurons by a central clock, a feature that
appears to missing in neural microcircuits. In addition they require the construction of particular
recurrent circuits, and cannot be implemented by evolving or adapting a given circuit.
Furthermore the results of (Maass et al., 1999) on the impact of noise on the computational power
of recurrent neural networks suggest that all these approaches break down as soon as one assumes
that the underlying analog computational units are subject to Gaussian or other realistic noise
distributions. Attractor neural networks on the other hand allow noise robust computation, but
their attractor landscape is in general hard to control, and they need to have a very large set of
attractors in order to store salient information on past inputs (for example 1024 attractors in order
to store 10 bits). In addition they are less suitable for real-time computing on rapidly varying
input streams because of the time required for convergence to an attractor. Finally, none of these
approaches allows that several real-time computations are carried out in parallel within the same
circuitry, which appears to be a generic feature of neural microcircuits.

In this article we analyze the dynamics of neural microcircuits from the point of view of a
readout neuron, whose task is to extract information and report results from a neural microcircuit
to other circuits. A human observer of the dynamics in a neural microcircuit would be looking for
clearly distinct and temporally stable features, such as convergence to attractors. We show that a
readout neuron, that receives inputs from hundreds or thousands of neurons in a neural

4

microcircuit, can learn to extract salient information from the high dimensional transient states of
the circuit, and can transform transient circuit states into stable readouts. In particular each
readout can learn to define its own notion of equivalence of dynamical states within the neural
microcircuit, and can then perform its task on novel inputs. This unexpected finding of “readout-
assigned equivalent states of a dynamical system” explains how invariant readout is possible
despite the fact that the neural microcircuit may never re-visit the same state. Furthermore we
show that multiple readout modules can be trained to perform different tasks on the same state
trajectories of a recurrent neural circuit, thereby enabling parallel real-time computing. We
present the mathematical framework for a computational model that does not require
convergence to stable internal states or attractors (even if they do occur), since information about
past inputs is automatically captured in the perturbations of a dynamical system, i.e. in the
continuous trajectory of transient internal states. Special cases of this mechanism were already
reported in (Buonomano et al., 1995) and (Dominey et al., 1995). Similar ideas have been
discovered independently by Herbert Jaeger (Jaeger, 2001) in the context of artificial neural
networks.

Computing without Attractors
As an illustration for our general approach towards real-time computing consider a series

of transient perturbations caused in an excitable medium (see (Holden et al., 1991)), for example
a liquid, by a sequence of external disturbances ("inputs") such as wind, sound, or sequences of
pebbles dropped into the liquid. Viewed as an attractor neural network, the liquid has only one
attractor state – the resting state – and may therefore seem useless for computational purposes.
However, the perturbed state of the liquid, at any moment in time, represents present as well as
past inputs, potentially providing the information needed for an analysis of various dynamic
aspects of the environment. In order for such a liquid to serve as a source of salient information
about present and past stimuli without relying on stable states, the perturbations must be sensitive
to saliently different inputs but non-chaotic. The manner in which perturbations are formed and
maintained would vary for different types of liquids and would determine how useful the
perturbations are for such “retrograde analysis”. Limitations on the computational capabilities of
liquids are imposed by their time-constant for relaxation, and the strictly local interactions and
homogeneity of the elements of a liquid. Neural microcircuits, however, appear to be “ideal
liquids” for computing on perturbations because of the large diversity of their elements, neurons
and synapses (see (Gupta et al., 2000)), and the large variety of mechanisms and time constants
characterizing their interactions, involving recurrent connections on multiple spatial scales
("loops within loops").

The foundation for our analysis of computations without stable states is a rigorous
computational model: the liquid state machine. Two macroscopic properties emerge from our
theoretical analysis and computer simulations as necessary and sufficient conditions for powerful
real-time computing on perturbations: a separation property, SP, and an approximation property,
AP.

SP addresses the amount of separation between the trajectories of internal states of the
system that are caused by two different input streams (in the case of a physical liquid, SP could
reflect the difference between the wave patterns resulting from different sequences of
disturbances).

5

Figure 1: A: Architecture of a LSM. A function of
time (time series) u(⋅) is injected as input into the

liquid filter ML , creating at time t the liquid state
xM(t), which is transformed by a memory-less readout
map f M to generate an output y(t).

AP addresses the resolution and recoding capabilities of the readout mechanisms - more
precisely its capability to distinguish and transform different internal states of the liquid into
given target outputs (whereas SP depends mostly on the complexity of the liquid, AP depends
mostly on the adaptability of the readout mechanism to the required task).

Liquid State Machines
Like the Turing machine (Savage, 1998), the model of a liquid state machine (LSM) is

based on a rigorous mathematical framework that guarantees, under idealized conditions,
universal computational power. Turing machines, however, have universal computational power
for off-line computation on (static) discrete inputs, while LSMs have in a very specific sense
universal computational power for real-time computing with fading memory on analog functions
in continuous time. The input function)(⋅u can be a continuous sequence of disturbances, and the
target output can be some chosen function)(⋅y of time that provides a real-time analysis of this
sequence. In order for a machine M to map input functions of time)(⋅u to output functions)(⋅y

of time, we assume that it generates, at every time t , an internal “liquid state”)(tx M , which
constitutes its current response to preceding perturbations, i.e., to preceding inputs)(su for ts ≤
(Figure 1). In contrast to the “finite state” of a finite state machine (or finite automaton) this
liquid state consists of analog values that may change continuously over time. Whereas the state
set and the state transition function of a finite state machine is in general constructed for a

specific task, the liquid states and the transitions between them need not be customized for a
specific task. In a physical implementation this liquid state consists of all information about the
current internal state of a dynamical system that is accessible to the readout modules. In

6

mathematical terms, this liquid state is simply the current output of some operator or filter1 ML
that maps input functions)(⋅u onto functions)(tx M :

.))(()(tuLtx MM =

In the following we will refer to this filter ML often as liquid filter, or liquid circuit if
implemented by a circuit. If it is implemented by a neural circuit, we refer to the neurons in that
circuit as liquid neurons.

The second component of a LSM M is a memory-less readout map Mf that transforms,

at every time t , the current liquid state)(tx M into the output

))(()(txfty MM= .

In contrast to the liquid filter ML , this readout map Mf is in general chosen in a task-specific
manner (and there may be many different readout maps, that extract different task-specific
information in parallel from the current output of ML). Note that in a finite state machine there
exists no analogon to such task-specific readout maps, since there the internal finite states are
already constructed in a task-specific manner. According to the preceding definition readout
maps are in general memory-less2. Hence all information about inputs)(su from preceding time
points ts ≤ that is needed to produce a target output y(t) at time t has to be contained in the
current liquid state)(tx M . Models for computation that have originated in computer science
store such information about the past in stable states (for example in memory buffers or tapped
delay lines). We argue, however, that this is not necessary since large computational power on
functions of time can also be realized even if all memory traces are continuously decaying.
Instead of worrying about the code and location where information about past inputs is stored,
and how this information decays, it is enough to address the separation question: For which later
time points t will any two significantly different input functions of time u(⋅) and v(⋅) cause
significantly different liquid states)(txM

u and)(txM
v . Good separation capability, in combination

1 Functions F that map input functions of time)(⋅u on output functions)(⋅y of time are usually
called operators in mathematics, but are commonly referred to as filters in engineering and
neuroscience. We use the term filter in the following, and we write))((tFu for the output of the
filter F at time t when F is applied to the input function)(⋅u . Formally, such filter F is a map

from nU into k)(RR , where RR is the set of all real-valued functions of time, k)(RR is the set of

vectors consisting of k such functions of time, U is some subset of RR , and nU is the set of
vectors consisting of n functions of time in U .
2 The term "memory-less" refers to the fact that the readout map Mf is not required to retain any

memory of previous states tssx M <),(, of the liquid. However, in a biological context, the
readout map will in general be subject to plasticity, and may also contribute to the memory
capability of the system. We do not explore this issues in this article because the differentiation
into a memory-less readout map and a liquid that serves as a memory device is made for
conceptual clarification, and is not essential to the model.

7

with an adequate readout map Mf , allows us to discard the requirement of storing bits "until
further notice" in stable states of the computational system.

Universal Computational Power of LSMs for Time Varying Inputs
We say that a class of machines has universal power for computations with fading

memory on functions of time if any filter F , i.e., any map from functions of time)(⋅u to
functions of time)(⋅y , that is time invariant 3 and has fading memory4, can be approximated by
machines from this class, to any degree of precision. Arguably, these filters F are approximated
according to this definition include all maps from input functions of time to output functions of
time that a behaving organism might need to compute.

A mathematical theorem (see Appendix A) guarantees that LSMs have this universal
computational power regardless of specific structure or implementation, provided that two
abstract properties are met: the class of basis filters from which the liquid filters ML are
composed satisfies the point-wise separation property and the class of functions from which the
readout maps Mf are drawn, satisfies the approximation property. These two properties provide
the mathematical basis for the separation property SP and the approximation property AP that
were previously discussed. Theorem 1 in Appendix A implies that there are no serious a priori
limits for the computational power of LSMs on continuous functions of time, and thereby
provides a theoretical foundation for our approach towards modeling neural computation. In
particular, since this theorem makes no specific requirement regarding the exact nature or
behaviour of the basis filters, as long as they satisfy the separation property (for the inputs in
question), it provides theoretical support for employing instead of circuits that were constructed

3 A filter F is called time invariant if any temporal shift of the input function)(⋅u by some

amount 0t causes a temporal shift of the output function Fuy = by the same amount 0t , i.e.,

))(())((0
0 ttFutFu t += for all R∈0,tt , where)(:)(0

0 ttutu t += . Note that if U is closed under

temporal shifts, then a time invariant filter knUF)(: RR→ can be identified uniquely by the
values)0)(()0(Fuy = of its output functions)(⋅y at time 0.
4 Fading memory (Boyd at al., 1985) is a continuity property of filters F which demands that for
any input function nUu ∈⋅)(the output)0)((Fu can be approximated by the outputs)0)((Fv for

any other input functions nUv ∈⋅)(that approximate)(⋅u on a sufficiently long time interval

[]0,T− . Formally one defines that knUF)(: RR→ has fading memory if for every nUu∈ and

every 0>ε there exist 0>δ and 0>T so that ε<−)0)(()0)((FuFv for all nUv ∈ with

δ<−)()(tvtu for all []0,Tt −∈ . Informally a filter F has fading memory if the most
significant bits of its current output value)0)((Fu depend just on the most significant bits of the

values of its input function)(⋅u from some finite time window []0,T− into the past. Thus, in
order to compute the most significant bits of)0)((Fu it is not necessary to know the precise
value of the input function)(su for any time s , and it is also not necessary to know anything
about the values of)(⋅u for more than a finite time interval back into the past. Note that a filter
that has fading memory is automatically causal.

8

for a specific task, partially evolved or even rather arbitrary “found” computational modules for
purposeful computations. This feature highlights an important difference to computational
theories based on Turing machines or finite state machines, which are often used as conceptual
basis for modeling neural computation.

The mathematical theory of LSMs can also be extended to cover computation on spike
trains (discrete events in continuous time) as inputs. Here the ith component ()⋅iu of the input)(⋅u

is a function that assumes only the values 0 and 1, with () 1=tui if the ith preceding neuron fires
at time t . Thus ()⋅iu is not a continuous function but a sequence of point events. Theorem 2 in
Appendix A provides a theoretical foundation for approximating any biologically relevant
computation on spike trains by LSMs.

Neural Microcircuits as Implementations of LSMs
In order to test the applicability of this conceptual framework to modeling computation in

neural microcircuits, we carried out computer simulations where a generic recurrent circuit of
integrate-and-fire neurons (see Appendix B for details) was employed as liquid filter. In other
words: computer models for neural microcircuits were viewed as implementation of the liquid
filter ML of an LSM. In order to test the theoretically predicted universal real-time computing
capabilities of these neural implementations of LSMs, we evaluated their performance on a wide
variety of challenging benchmark tasks. The input to the neural circuit was via one or several
input spike trains, which diverged to inject current into 30% randomly chosen ”liquid neurons”.
The amplitudes of the input synapses were chosen from a Gaussian distribution, so that each
neuron in the liquid circuit received a slightly different input (a form of topographic injection).
The liquid state of the neural microcircuit at time t was defined as all information that a readout
neuron could extract at time t from the circuit, i.e. the output at time t of all the liquid neurons
represented the current liquid state of this instantiation of a LSM. More precisely, since the
readout neurons were modeled as I&F neurons with a biologically realistic membrane time
constant of 30 ms, the liquid state)(tx M at time t consisted of the vector of contributions of all
the liquid neurons to the membrane potential at time t of a generic readout neuron (with unit
synaptic weights). Mathematically this liquid state)(tx M can be defined as the vector of output
values at time t of linear filters with exponential decay (time constant 30 ms) applied to the spike
trains emitted by the liquid neurons.

Each readout map Mf was implemented by a separate population P of integrate-and-fire
neurons (referred to as "readout neurons") that received input from all the "liquid neurons", but
had no lateral or recurrent connections5. The current firing activity p(t) of the population P, that is
the fraction of neurons in P firing during a time bin of 20ms , was interpreted as the analog
output of Mf at time t (one often refers to such representation of analog values by the current
firing activity in a pool of neurons as space rate coding). Theoretically the class of readout maps
that can be implemented in this fashion satisfies the approximation property AP (Maass, 2000,
Auer et al., 2001), and is according to Theorem 1 in principle sufficient for approximating
arbitrary given fading memory filters F. In cases where a readout with discrete values 1 and 0

5 For conceptual purposes we separate the “liquid” and “readout” elements in this paper, although
dual liquid-readout functions can also be implemented.

9

Figure 2: Average distance of liquid states for two different
input spike trains u and v (given as input to the neural circuit
in separate trials, each time with an independently chosen
random initial state of the neural circuit, see Appendix B)
plotted as a function of time t . The state distance increases
with the distance d(u,v) between the two input spike trains u
and v. Plotted on the y-axis is the average value of

)()(txtx M
v

M
u − , where ||.|| denotes the Euclidean norm,

and)(txM
u ,)(txM

v denote the liquid states at time t for

input spike trains u and v. The plotted results for the values
0.1, 0.2, 0.4 of the input difference d' represent the average
over 200 randomly generated pairs u and v of spike trains

such that 01.0),(' <− vudd . Parameters of the liquid: 1

column, degree of connectivity λ = 2 (see Appendix B for
details).

suffices, one can implement a readout map even by a single I&F neuron that represents these
discrete output values by firing/non-firing at time t . In cases where the target output consists of
slowly varying analog values, a single readout neuron can be trained to represent these values
through its time-varying firing rate. In any case the readout neurons can be trained to perform a
specific task by adjusting the strengths of synapses projected onto them from the liquid neurons
using a perceptron-like local learning rule (Auer et al., 2001). The final learned state of the
readout neurons enables them to take particular weighted sums of the current outputs)(tx M of

the liquid neurons and generate a response Mf ()(tx M) that approximates the target value y(t).
As a first test of these neural implementations of LSMs we evaluated the separation

property SP of computer models for
neural microcircuits on spike train inputs.
A large set of pairs of Poisson spike
trains)(⋅u and v(⋅) were randomly
generated and injected (in separate trials)
as input to the recurrent neural circuit.
The resulting trajectories)(⋅M

ux and

)(⋅M
vx of liquid states of the recurrent

circuit were recorded for each of these
time-varying inputs)(⋅u and v(⋅). The

average distance)()(txtx M
v

M
u −

between these liquid states was plotted in
Figure 2 as a function of the time t after
the onset of the input, for various fixed
values of the distance d(u,v)6 between the
two spike train inputs u and v. These
curves show that the distance between
these liquids states is well above the
noise level, i.e. above the average liquid
state differences caused by the same
spike train applied with two different
randomly chosen initial conditions of the
circuit (indicated by the solid curve).
Furthermore these curves show that the
difference in liquid states is after the first
30 ms roughly proportional to the
distance between the corresponding input

6 In order to define the distance),(vud between two spike trains u and v we replaced each

spike by a Gaussian))/(exp(2τt− for τ = 5ms (to be precise, u and v are convolved with the

Gaussian kernel))/(exp(2τt−) and defined),(vud as the distance of the resulting two
continuous functions in the 2L -norm (divided by the maximal lengths 0.5 s of the spike trains u
and v).

10

spike trains. Note in particular the absence of chaotic effects for these generic neural microcircuit
models with biologically realistic intermediate connection lengths.

Exploring the Computational Power of Models for Neural Microcircuit
As a first test of its computational power this simple generic circuit was applied to a

previously considered classification task (Hopfield & Brody, 2001), where spoken words were
represented by noise-corrupted spatio-temporal spike patterns over a rather long time interval
(40-channel spike patterns over 0.5s). This classification task had been solved in (Hopfield &
Brody, 2001) by a network of neurons designed for this task (relying on unknown mechanisms
that could provide smooth decays of firing activity over longer time periods, and apparently
requiring substantially larger networks of I&F neurons if fully implemented with I&F neurons).
The architecture of that network, which had been customized for this task, limited its
classification power to spike trains consisting of a single spike per channel.

We found that the same, but also a more general version of this spatio-temporal pattern
recognition task that allowed several spikes per input channel, can be solved by a generic
recurrent circuit as described in the previous section. Furthermore the output of this network was
available at any time, and was usually correct as soon as the liquid state of the neural circuit had
absorbed enough information about the input (the initial value of the correctness just reflects the
initial guess of the readout). Formally we defined the correctness of the neural readout at time s
by the term 1 − | target output y(s) – readout activity p(s) | , where the target output y(s) consisted
in this case of the constant values 1 or 0, depending on the input pattern. Plotted in Fig. 3 is for
any time t during the presentation of the input patterns in addition to the correctness as a function
of t also the certainty of the output at time t, which is defined as the average correctness up to that
time t. Whereas the network constructed by Hopfield and Brody was constructed to be invariant
with regard to linear time warping of inputs (provided that only one spike arrives in each
channel), the readouts of the generic recurrent circuit that we considered could be trained to be
invariant with regard to a large class of different types of noises. The results shown in Fig. 3 are
for a noise where each input spike is moved independently by an amount drawn from a Gaussian
distribution with mean 0 and SD 32 ms.

11

Figure 3: Application of a generic recurrent network of I&F neurons – modeled as LSM – to a
more difficult version of a well-studied classification task (Hopfield & Brody, 2001). Five
randomly drawn patterns (called “zero”, "one ", "two", ..), each consisting of 40 parallel
Poisson spike trains over 0.5s, were chosen. Five readout modules, each consisting of 50
integrate-and-fire neurons, were trained with 20 noisy versions of each input pattern to respond
selectively to noisy versions of just one of these patterns (noise was injected by randomly
moving each spike by an amount drawn independently from a Gaussian distribution with mean
0 and variance 32ms; in addition the initial state of the liquid neurons was chosen randomly at
the beginning of each trial). The responses of the readout which had been trained* to detect the
pattern "zero" is shown for a new, previously not shown, noisy versions of two of the input
patterns. The correctness and certainty (= average correctness so far) are shown as functions of
time from the onset of the stimulus at the bottom. The correctness is calculated as 1−p(t)-
y(t) where p(t) is the normalized firing activity in the readout pool (normalized to the range [0
1]; 1 corresponding to an activity of 180Hz; binwidth 20ms) and y(t) is the target output.
(Correctness starts at a level of 0 for pattern “zero” where this readout pool is supposed to
become active, and at a value of 1 for pattern “one”, because the readout pool starts in an
inactive state). In contrast to most circuits of spiking neurons that have been constructed for
specific computational task, the spike trains of liquid and readout neurons shown in this figure
look rather “realistic”.
*The familiar delta-rule was applied or not applied to each readout neuron, depending on whether the
current firing activity in the readout pool was too high, too low, or about right, thus requiring at most two
bits of global communication. The precise version of the learning rule was the p-delta rule that is
discussed in Auer et al., (2001).

12

Giving a constant output for a time-varying liquid state (caused by a time-varying input)
is a serious challenge for a LSM, since it cannot rely on attractor states, and the memory-less
readout has to transform the transient and continuously changing states of the liquid into a stable
output (see the discussion below and Fig. 9 for details). In order to explore the limits of this
simple neural implementation of a LSM for computing on time-varying input, we chose another
classification task where all information of the input is contained in its temporal evolution, more
precisely in the interspike intervals of a single input spike train. In this test, 8 randomly generated
Poisson spike trains over 250 ms, or equivalently 2 Poisson spike trains over 1000 ms partitioned

into 4 segments each (see top of Figure 4), were chosen as template patterns. Other spike trains
over 1000 ms were generated by choosing for each 250 ms segment one of the two templates for
this segment, and by jittering each spike in the templates (more precisely: each spike was moved
by an amount drawn from a Gaussian distribution with mean 0 and a SD that we refer to as
“jitter”, see bottom of Figure 4). A typical spike train generated in this way is shown in the
middle of Figure 4. Because of the noisy dislocation of spikes it was impossible to recognize a
specific template from a single interspike interval (and there were no spatial cues contained in
this single channel input). Instead, a pattern formed by several interspike intervals had to be
recognized and classified retrospectively. Furthermore readouts were not only trained to classify
at time 1000=t ms (i.e., at after the input spike train had entered the circuit) the template from
which the last 250 ms segment of this input spike train had been generated, but other readouts
were trained to classify simultaneously also the templates from which preceding segments of the
input (which had entered the circuit several hundred ms earlier) had been generated. Obviously

Figure 4: Evaluating the fading memory of a generic neural microcircuit: the task. In this more
challenging classification task all spike trains are of length 1000 ms and consist of 4 segments of
length 250 ms each. For each segment 2 templates were generated randomly (Poisson spike train
with a frequency of 20 Hz); see upper traces. The actual input spike trains of length 1000 ms used
for training and testing were generated by choosing for each segment one of the two associated
templates, and then generating a noisy version by moving each spike by an amount drawn from a
Gaussian distribution with mean 0 and a SD that we refer to as “jitter” (see lower trace for a
visualization of the jitter with an SD of 4 ms). The task is to output with 4 different readouts at time
t = 1000 ms for each of the preceding 4 input segments the number of the template from which the
corresponding segment of the input was generated. Results are summarized in Figures 5 and 6.

13

Figure 5: Evaluating the fading memory of a generic neural microcircuit:
results. 4 readout modules f1 to f4 , each consisting of a single perceptron, were trained
for their task by linear regression. The readout module fi was trained to output 1 at
time t=1000 ms if the i-th segment of the previously presented input spike train had
been constructed from the corresponding template 1, and to output 0 at time t=1000
ms otherwise. Correctness (percentage of correct classification on an independent set
of 500 inputs not used for training) is calculated as average over 50 trials. In each trial
new Poisson spike trains were drawn as templates, a new randomly connected circuit
was constructed (1 column, λ=2; see Appendix B), and the readout modules f1 to f4
were trained with1000 training examples generated by the distribution described in
Figure 4 . A: Average correctness of the 4 readouts for novel test inputs drawn from
the same distribution. B: Firing activity in the liquid circuit (time interval [0.5 s ,
0.8 s]) for a typical input spike train. C: Results of a control experiment where all
dynamic synapses in the liquid circuit had been replaced by static synapses (the mean
values of the synaptic strengths were uniformly re-scaled so that the average liquid
activity is approximately the same as for dynamic synapses). The liquid state of this
circuit contained substantially less information about earlier input segments. D:
Firing activity in the liquid circuit with static synapses used for the classification
results reported in panel C . The circuit response to each of the 4 input spikes that
entered the circuit during the observed time interval [0.5 s, 0.8 s] is quite stereotypical
without dynamic synapses (except for the second input spike that arrives just 20 ms
after the first one). In contrast the firing response of the liquid circuit with dynamic
synapses (panel B) is different for each of the 4 input spikes, showing that dynamic
synapses endow these circuits with the capability to process new input differently
depending on the context set by preceding input, even if that preceding input occurred
several hundred ms before.

the latter classification task is substantially more demanding, since the corresponding earlier
segments of the input spike train may have left a clear trace in the current firing activity of the
recurrent circuit just after they had entered the circuit, but this trace was subsequently overwritten
by the next segments of the input spike train (which had no correlation with the choice of the
earlier segments). Altogether there were in this experiment 4 readouts f1 to f4 , where fi had been
trained to classify at time 1000=t ms the i-th independently chosen 250 ms segment of the
preceding input spike train.

The performance of the LSM, with a generic recurrent network of 135 I&F neurons as
liquid filter (see
Appendix B), was
evaluated after
training of the
readout pools on
inputs from the same
distribution (for jitter
= 4 ms), but with an
example that the
LSM had not seen
before. The accuracy
of the 4 readouts is
plotted in panel A of
Figure 5. It
demonstrates the
fading memory of a
generic recurrent
circuit of I&F
neurons, where
information about
inputs that occurred
several hundred ms
ago can be recovered
even after that input
segment was
subsequently
overwritten.

Since readout
neurons (and neurons
within the liquid
circuit) were modeled
with a realistic time
constant of just 30
ms, the question
arises where this
information about
earlier inputs had
been stored for

14

Figure 6: Average correctness depends on the parameter λ
that controls the distribution of random connections within the
liquid circuit. Plotted is the average correctness (at time t=1000 ms,
calculated as average over 50 trials as in Figure 5; same number of
training and test examples) of the readout module f3 (which is
trained to classify retroactively the second to last segment of the
preceding spike train) as a function of λ. The bad performance for
λ=0 (no recurrent connections within the circuit) shows that
recurrent connections are essential for achieving a satisfactory
separation property in neural microcircuits. Too large values of λ
also decrease the performance because they support a chaotic
response.

several hundred ms. As a control we repeated the same experiment with a liquid circuit where the
dynamic synapses had been replaced by static synapses (with synaptic weights that achieved
about the same level of firing activity as the circuit with dynamic synapses). Panel C of Fig. 5
shows that this results in a significant loss in performance for the classification of all except for
the last input segment. A possible explanation is provided by the raster plots of firing activity in
the liquid circuit with (panel B) and without dynamic synapses (panel D), shown here with high
temporal resolution. In the circuit with dynamic synapses the recurrent activity differs for each of
the 4 spikes that entered the circuit during the time period shown, demonstrating that each new

spike is processed by the circuit in
an individual manner that depends
on the “context” defined by
preceding input spikes. In contrast,
the firing response is very
stereotypical for the same 4 input
spikes in the circuit without
dynamic synapses, except for the
response to the second spike that
arrives within 20 ms of the first one
(see the period between 500 and
600 ms in panel D). This indicates
that the short term dynamics of
synapses may play an essential role
in the integration of information for
real-time processing in neural
microcircuits.

Figure 6 examines another
aspect of neural microcircuits that
appears to be important for their
separation property: the statistical
distribution of connection lengths
within the recurrent circuit. Six
types of liquid circuits, each

consisting of 135 I&F neurons but with different values of the parameter λ which regulated the
average number of connections and the average spatial length of connections (see Appendix B),
were trained and evaluated according to the same protocol and for the same task as in Fig. 5.
Shown in Fig. 6 is for each of these 6 types of liquid circuits the average correctness of the
readout f3 on novel inputs, after it had been trained to classify the second to last segment of the
input spike train. The performance was fairly low for circuits without recurrent connections (λ =
0). It also was fairly low for recurrent circuits with large values of λ , whose largely length-
independent distribution of connections homogenized the microcircuit and facilitated chaotic
behavior. Hence for this classification task the ideal “liquid circuit” is a microcircuit that has in
addition to local connections to neighboring neurons also a few long-range connections, thereby
interpolating between the customarily considered extremes of strictly total connectivity (like in a
cellular automaton) on one hand, and the locality-ignoring global connectivity of a Hopfield net
on the other hand.

15

The performance results of neural implementations of LSMs that were reported in this
section should not be viewed as absolute data on the computational power of recurrent neural
circuits. Rather the general theory suggests that their computational power increases with any
improvement in their separation or approximation property. Since the approximation property AP
was already close to optimal for these networks (increasing the number of neurons in the readout
module did not increase the performance significantly; not shown), the primary limitation in
performance lay in the separation property SP. Intuitively it is clear that the liquid circuit needs to
be sufficiently complex to hold the details required for the particular task, but should reduce
information that is not relevant to the task (for example spike time jitter). SP can be engineered in
many ways such as incorporating neuron diversity, implementing specific synaptic architectures,
altering microcircuit connectivity, or simply recruiting more columns. The last option is of
particular interest because it is not available in most computational models. It will be explored in
the next section.

Adding Computational Power
An interesting structural difference between neural systems and our current generation of

artificial computing machinery is that the computational power of neural systems can apparently
be enlarged by recruiting more circuitry (without the need to rewire old or new circuits). We
explored the consequences of recruiting additional columns for neural implementations of LSMs
(see panel B of Fig. 7), and compared it with the option of just adding further connections to the

Figure 7: Separation property and performance of liquid circuits with larger numbers of connections
or neurons. A and B: Schematic drawings of LSMs consisting of one column (A) and four columns (B). Each
column consists of 3×3×15 = 135 I&F neurons. C: Separation property depends on the structure of the liquid.
Average state distance (at time 100=t ms) calculated as described in Figure 2. A column with high internal
connectivity (high λ) achieves higher separation as a single column with lower connectivity, but tends to
chaotic behavior where it becomes equally sensitive to small and large input differences d(u,v). On the other
hand the characteristic curve for a liquid consisting of 4 columns with small λ is lower for values of d(u,v)
lying in the range of jittered versions u and v of the same spike train pattern (d(u,v) ≤ 0.1 for jitter ≤ 8 ms) and
higher for values of d(u,v) in the range typical for spike trains u and v from different classes (mean: 0.22).
D: Evaluation of the same three types of liquid circuits for noise robust classification. Plotted is the average
performance for the same task as in Fig. 6, but for various values of the jitter in input spike times. Several
columns (not interconnected) with low internal connectivity yield a better performing implementation of a
LSM for this computational task, as predicted by the analysis of their separation property.

16

primary one-column-liquid that we used so far (135 I&F neurons with λ = 2, see panel A of Fig.
7). Panel C of Fig. 7 demonstrates that the recruitment of additional columns increases the
separation property of the liquid circuit in a desirable manner, where the distance between
subsequent liquid states (always recorded at time 1000=t ms in this experiment) is proportional
to the distance between the spike train inputs that had previously entered the liquid circuit (spike
train distance measured in the same way as for Fig. 2). In contrast the addition of more
connections to a single column (λ = 8, see Appendix B) also increases the separation between
subsequent liquid states, but in a quasi-chaotic manner where small input distances cause about
the same distances between subsequent liquid states as small input differences. In particular the
subsequent liquid state distance is about equally large for two jittered versions of the input spike
train state (yielding typically a value of d(u,v) around 0.1) as for significantly different input
spike trains that require different outputs of the readouts. Thus improving SP by altering the
intrinsic microcircuitry of a single column increases sensitivity for the task, but also increases
sensitivity to noise. The performance of these different types of liquid circuits for the same
classification task as in Fig. 6 is consistent with this analysis of their characteristic separation
property. Shown in panel D of Fig. 7 is their performance for various values of the spike time
jitter in the input spike trains. The optimization of SP for a specific distribution of inputs and a
specific group of readout modules is likely to arrive at a specific balance between the intrinsic
complexity of the microcircuitry and the number of repeating columns.

Parallel Computing in Real-Time on Novel Inputs
Since the liquid of the LSM does not have to be trained for a particular task, it supports

parallel computing in real-time. This was demonstrated by a test in which multiple spike trains
were injected into the liquid and multiple readout neurons were trained to perform different tasks
in parallel. We added 6 readout modules to a liquid consisting of 2 columns with different values
of λ7. Each of the 6 readout modules was trained independently for a completely different online
task that required an output value at any time t. We focused here on tasks that require diverse and
rapidly changing analog output responses y(t). Figure 8 shows that after training each of these 6
tasks can be performed in real-time with high accuracy. The performance shown is for a novel
input that was not drawn from the same distribution as the training examples, and differs in
several aspects from the training examples (thereby demonstrating the possibility of extra-
generalization in neural microcircuits, due to their inherent bias, that goes beyond the usual
definition of generalization in statistical learning theory).

Readout-Assigned Equivalent States of a Dynamical System
Real-time computation on novel inputs implies that the readout must be able to generate

an invariant or appropriately scaled response for any input even though the liquid state may never
repeat. Indeed, Figure 3 showed already that the dynamics of readout pools can become quite
independent from the dynamics of the liquid even though the liquid neurons are the only source

7 In order to combine high sensitivity with good generalization performance we chose here a
liquid consisting of two columns as before, one with λ=2, the other with λ=8 and the interval
[14.0 14.5] for the uniform distribution of the nonspecific background current Ib.

17

of input. To examine the underlying mechanism for this relatively independent readout response,
we re-examined the readout pool from Figure 3. Whereas the firing activity within the liquid
circuit was highly dynamic, the firing activity in the readout pool was almost constant after
training. The stability of the readout response does not simply come about because the readout
only samples a few “unusual” liquid neurons as shown by the distribution of synaptic weights
onto a sample readout neuron (Figure 9F). Since the synaptic weights do not change after
learning, this indicates that the readout neurons have learned to define a notion of equivalence for
dynamic states of the liquid. Indeed, equivalence classes are an inevitable consequence of
collapsing the high dimensional space of liquid states into a single dimension, but what is
surprising is that the equivalence classes are meaningful in terms of the task, allowing invariant
and appropriately scaled readout responses and therefore real-time computation on novel inputs.
Furthermore, while the input rate may contain salient information that is constant for a particular
readout element, it may not be for another (see for example Fig. 8), indicating that equivalence
classes and dynamic stability exist purely from the perspective of the readout elements.

18

Figure 8: Multi-tasking in real-time. 4 input spike trains of length 2 s (shown at the top) are injected into a liquid
module consisting of 2 columns (randomly constructed with the same parameters; see Appendix B), which is
connected to multiple readout modules. Each readout module is trained to extract information for a different real-
time computing task. The target functions are plotted as dashed line, and population response of the
corresponding readout module as solid line. The tasks assigned to the 6 readout modules were the following:
Represent the sum of rates: at time t, output the sum of firing rates of all 4 input spike trains within the last
30ms. Represent the integral of the sum of rates: at time t, output the total activity in all 4 inputs integrated over
the last 200ms. Pattern detection: output a high value if a specific spatio temporal spike pattern appears.
Represent a switch in spatial distribution of rates: output a high value if a specific input pattern occurs where the
rate of input spike trains 1 and 2 goes up and simultaneously the rate of input spike trains 3 and 4 goes down,
otherwise remain low. Represent the firing correlation: at time t, output the number of spike coincidences
(normalized into the range [0 1]) during the last 75 ms for inputs 1 and 3 and separately for inputs 1 and 2.
Target readout values are plotted as dashed lines, actual outputs of the readout modules as solid lines, all in the
same time scale as the 4 spike trains shown at the top that enter the liquid circuit during this 2 s time interval.

Results shown are for a novel input that was not drawn from the same distribution as the training
examples. 150 training examples were drawn randomly from the following distribution. Each input spike train
was an independently drawn Possion spike train with a time varying rate of r(t) = A+B sin (2 π f t + α). The
parameters A, B, and f where drawn randomly from the following intervals (the phase was fixed at α=0° deg): A
[0Hz, 30Hz] and [70Hz, 100Hz], B [0Hz, 30Hz] and [70Hz, 100Hz], f [0.5Hz, 1Hz] and [3Hz, 5Hz]. On this
background activity 4 different patterns had been superimposed (always in the same order during training): rate
switch to inputs 1 and 3, a burst pattern, rate switch to inputs 1 and 2, and finally a spatio temporal spike pattern.

The results shown are for a test input that could not be generated by the same distribution as the training
examples, because its base level (A=50Hz), as well as the amplitude (B=50Hz), frequency (f=2Hz) and phase
(α=180° deg) of the underlying time varying firing rate of the Poisson input spike trains were chosen to lie in the
middle of the gaps between the two intervals that were used for these parameters during training. Furthermore
the spatio-temporal patterns (a burst pattern, rate switch to inputs 1 and 3, and rate switch to inputs 1 and 2), that
were superimposed to achieve more input variation within the observed 2 s, never occured in this order and at
these time points for any training input. Hence the accurate performance for this novel input demonstrates
substantial generalization capabilities of the readouts after training.

19

Discussion
We introduce the liquid state machine, a new paradigm for real-time computing on time-

varying input streams. In contrast to most computational models it does not require the
construction of a circuit or program for a specific computational task. Rather, it relies on
principles of high-dimensional dynamical systems and learning theory that allow it to adapt
unspecific evolved or found recurrent circuitry for a given computational task. Since only the
readouts, not the recurrent circuit itself, have to be adapted for specific computational tasks, the
same recurrent circuit can support completely different real-time computations in parallel. The
underlying abstract computational model of a liquid state machine (LSM) emphasizes the
importance of perturbations in dynamical systems for real-time computing, since even without
stable states or attractors the separation property and the approximation property may endow a
dynamical system with virtually unlimited computational power on time-varying inputs.

In particular we have demonstrated the computational universality of generic recurrent
circuits of integrate-and-fire neurons (even with quite arbitrary connection structure), if viewed as
special cases of LSMs. Apparently this is the first stable and generally applicable method for
using generic recurrent networks of integrate-and-fire neurons to carry out a wide family of
complex real-time computations on spike trains as inputs. Hence this approach provides a
platform for exploring the computational role of specific aspects of biological neural
microcircuits. The computer simulations reported in this article provide possible explanations not
only for the computational role of the highly recurrent connectivity structure of neural circuits,
but also for their characteristic distribution of connection lengths, which places their connectivity
structure between the extremes of strictly local connectivity (cellular automata or coupled map
lattices) and uniform global connectivity (Hopfield nets) that are usually addressed in theoretical
studies. Furthermore our computer simulations suggest an important computational role of
dynamic synapses for real-time computing on time-varying inputs. Finally, we reveal a most
unexpected and remarkable principle that readout elements can establish their own equivalence
relationships on high-dimensional transient states of a dynamical system, making it possible to
generate stable and appropriately scaled output responses even if the internal state never
converges to an attractor state.

In contrast to virtually all computational models from computer science or artificial neural
networks, this computational model is enhanced rather than hampered by the presence of diverse
computational units. Hence it may also provide insight into the computational role of the
complexity and diversity of neurons and synapses (see for example (Gupta et al., 2000)).

While there are many plausible models for spatial aspects of neural computation, a
biologically realistic framework for modeling temporal aspects of neural computation has been
missing. In contrast to models inspired by computer science, the liquid state machine does not try
to reduce these temporal aspects to transitions between stable states or limit cycles, and it does
not require delay lines or buffers. Instead it proposes that the trajectory of internal states of a
recurrent neural circuit provides a raw, unbiased, and universal source of temporally integrated
information, from which specific readout elements can extract specific information about past
inputs for their individual task. Hence the notorious trial-to-trial stimulus response variations in
single and populations of neurons observed experimentally, may reflect an accumulation of
information from previous inputs in the trajectory of internal states, rather than noise (see also
(Arieli et al., 1996)). This would imply that averaging over trials or binning, peels out most of the
information processed by recurrent microcircuits and leaves mostly topographic information.

20

This approach also offers new ideas for models of the computational organisation of
cognition. It suggests that it may not be necessary to scatter all information about sensory input
by recoding it through feedforward processing as output vector of an ensemble of feature

detectors with fixed receptive fields (thereby creating the "binding problem"). It proposes that at
the same time more global information about preceding inputs can be preserved in the trajectories
of very high dimensional dynamical systems, from which multiple readout modules extract and
combine the information needed for their specific tasks. This approach is nevertheless compatible
with experimental data that confirm the existence of special maps of feature detectors. These

Figure 9: Readout assigned equivalent states of a dynamical system. A LSM (liquid circuit as in Figure 3)
was trained for the classification task as described in Figure 3. Results shown are for a novel test input
(drawn from the same distribution as the training examples). A: The test input consists of 40 Poisson spike
trains, each with a constant rate of 5 Hz. B: Raster plot of the 135 liquid neurons in response to this input.
Note the large variety of liquid states that arise during this time period. C: Population rate of the liquid
(bin-size 20 ms). Note that this population rate changes quit a bit over time. D: Readout response (solid
line) and target response (dashed line). The target response had a constant value of 1 for this input. The
output of the trained readout module is also almost constant for this test example (except for the
beginning), although its input, the liquid states of the recurrent circuit, varied quit a bit during this time
period. F: Weight distribution of a single readout neuron.

21

could reflect specific readouts, but also specialized components of a liquid circuit, that have been
optimized genetically and through development to enhance the separation property of a neural
microcircuit for a particular input distribution. The new conceptual framework presented in this
article suggests to complement the experimental investigation of neural coding by a systematic
investigation of the trajectories of internal states of neural microcircuits or systems, which are
compared on one hand with inputs to the circuit, and on the other hand with responses of
different readout projections.

The liquid computing framework suggests that recurrent neural microcircuits, rather than
individual neurons, might be viewed as basic computational units of cortical computation, and
therefore may give rise to a new generation of cortical models that link LSM “columns” to form
cortical areas where neighboring columns read out different aspects of another column and where
each of the stereotypic columns serve both liquid and readout functions. In fact, the classification
of neurons into liquid- and readout neurons is primarily made for conceptual reasons. Another
conceptual simplification was made by restricting plasticity to synapses onto readout neurons.
However synapses in the liquid circuit are likely to be also plastic, for example to support the
extraction of independent components of information about preceding time varying inputs for a
particular distribution of natural stimuli and thereby enhance the separatio property of neural
microcircuits. This plasticity within the liquid would be input-driven and less task specific, and
might be most prominent during development of an organism. In addition, the information
processing capabilities of hierarchies – or other structured networks – of LSMs remain to be
explored, which may provide a basis for modeling larger cortical areas.

Apart from biological modeling, the computational model discussed in this article may
also be interest for some areas of computer science. In computer applications where real-time
processing of complex input streams is required, such as for example in robotics, there is no need
to work with complicated heterogeneous recurrent networks of integrate-and-fire neurons as in
biological modeling. Instead, one can use simple devices such as tapped delay lines for storing
information about past inputs. Furthermore one can use any one of large selection of powerful
tools for static pattern recognition (such as feedforward neural networks, support vector
machines, or decision trees) to extract from the current content of such tapped delay line
information about a preceding input time series, in order to predict that time series, to classify
that time series, or to propose actions based on that time series. This works fine, except that one
has deal with the problems caused by local minima in the error functions of such highly nonlinear
pattern recognition devices, which may result in slow learning and suboptimal generalization. In
general the escape from such local minima requires further training examples, or time-
consuming offline computations such as repetition of backprop for many different initial weights,
or the solution of a quadratic optimization problem in the case of support vector machines. Hence
these approaches tend to be incompatible with real-time requirements, where a classification or
prediction of the past input time series is instantly needed. Furthermore these standard
approaches provide no support for multi-tasking, since one has to run for each individual
classification or prediction task a separate copy of the time-consuming pattern recognition
algorithm. In contrast, the alternative computational paradigm discussed in this article suggests to
replace the tapped delay line by a nonlinear online projection of the input time series into a high-
dimensional space, in combination with linear readouts from that high-dimensional intermediate
space. The nonlinear online preprocessing could even be implemented by inexpensive (even
partially faulty) analog circuitry, since the details of this online preprocessing do not matter, as
long as the separation property is satisfied for all relevant inputs. If this task-independent online

22

preprocessing maps input streams into a sufficiently high-dimensional space, all subsequent
linear pattern recognition devices, such as perceptrons, receive essentially the same classification
and regression capability for the time varying inputs to the system as nonlinear classifiers without
preprocessing. The training of such linear readouts has an important advantage compared with
training nonlinear readouts. While the error minimization for a nonlinear readout is likely to get
stuck in local minima, the sum of squared errors for a linear readout has just a single local
minimum, which is automatically the global minimum of this error function. Furthermore the
weights of a linear readouts can be adapted in an online manner by very simple local learning
rules so that the weight vector moves towards this global minimum. Related mathematical facts
are exploited by support vector machines in machine learning (Vapnik, 1998), although the
boosting of the expressive power of linear readouts is implemented there in a different fashion
that is not suitable for real-time computing.

Finally, the new approach towards real-time neural computation presented in this article
may provide new ideas for neuromorphic engineering and analog VLSI. Besides implementing
recurrent circuits of spiking neurons in silicon one could examine a wide variety of other
materials and circuits that may potentially enable inexpensive implementation of liquid modules
with suitable separation properties, to which a variety of simple adaptive readout devices may be
attached to execute multiple tasks.

Acknowledgement
We would like to thank Rodney Douglas, Herbert Jaeger, Wulfram Gerstner, Alan Murray, Misha Tsodyks, Thomas
Poggio, Lee Segal, Tali Tishby, Idan Segev, Phil Goodman & Mark Pinsky for their comments on a draft of this
article. The work was supported by project # P15386 of the Austrian Science Fund, the NeuroCOLT project of the
EU, the Office of Naval Research, HFSP, Dolfi & Ebner Center and the Edith Blum Foundation. HM is the
incumbent of the Diller Family Chair in Neuroscience.

References

Arieli, A., Sterkin, A., Grinvald, A., & Aertsen, A. (1996). Dynamics of ongoing activity:
explanation of the large variability in evoked cortical responses. Science, 273, 1868-1871.

Auer, P., Burgsteiner, H., & Maass, W. (2001) The p-delta rule for parallel perceptrons.
Submitted for publication, online available at
http://www.igi.TUGraz.at/maass/p_delta_learning.pdf.

Boyd, S., & Chua, L.O. (1985). Fading memory and the problem of approximating nonlinear
operators with Volterra series. IEEE Trans. on Circuits and Systems, 32, 1150-1161.

Buonomano, D.V., & Merzenich, M.M. (1995). Temporal information transformed into spatial
code by a neural network with realistic properties. Science, 267, 1028-1030.

Dominey P., Arbib, M., & Joseph, J.P. (1995). A model of corticostriatal plasticity for learning
oculomotor association and sequences. J. Cogn. Neurosci. 7(3), 311-336.

23

Douglas, R., & Martin, K. (1998). Neocortex. In: The Synaptic Organization of the Brain. G.M.
Shepherd, Ed. (Oxford University Press), 459-509.

Giles, C.L., Miller, C.B., Chen, D., H.H., Sun, G.Z., & Lee, Y.C. (1992). Learning and extracting
finite state automata with second-order recurrent neural networks. Neural Computation, 4, 393-
405.

Gupta, A., Wang, Y., & Markram, H. (2000). Organizing principles for a diversity of GABAergic
interneurons and synapses in the neocortex. Science 287, 2000, 273-278.

Hertz, J., Krogh, A., & Palmer, R.G. (1991). Introduction to the Theory of Neural Computation.
(Addison-Wesley, Redwood City, Ca).

Holden, A.V., Tucker, J.V., & Thompson, B.C. (1991). Can excitable media be considered as
computational systems? Physica D, 49, 240-246.

Hopfield, J.J., & Brody, C.D. (2001). What is a moment? Transient synchrony as a collective
mechanism for spatio-temporal integration. Proc. Natl. Acad. Sci., USA, 89(3), 1282.

Hyoetyniemi, H. (1996). Turing machines are recurrent neural networks. Proc. of SteP’96 –
Genes, Nets and Symbols. Alander, J., Honkela, T. & Jacobsson, M., editors, Finnish Artificial
Intelligence Society, 13-24

Jaeger, H. (2001). The “echo state” approach to analyzing and training recurrent neural networks,
submitted for publication.

Maass, W. (1996). Lower bounds for the computational power of networks of spiking neurons.
Neural Computation, 8(1), 1-40

Maass, W. (2000). On the computational power of winner-take-all. Neural Computation,
12(11):2519-2536.

Maass, W., & Sontag, E.D. (1999). Analog neural nets with Gaussian or other common noise
distributions cannot recognize arbitrary regular languages. Neural Computation, 11: 771-782

Maass, W., & Sontag, E.D. (2000). Neural systems as nonlinear filters. Neural Computation,
12(8):1743-1772

Markram, H., Wang, Y., & Tsodyks, M. (1998). Differential signaling via the same axon of
neocortical pyramidal neurons. Proc. Natl. Acad. Sci., 95, 5323-5328.

Moore, C. (1998). Dynamical recognizers: real-time language recognition by analog computers.
Theoretical Computer Science, 201, 99-136.

Pearlmutter, B.A. (1995). Gradient calculation for dynamic recurrent neural networks: a survey.
IEEE Trans. On Neural Networks, 6(5): 1212-1228

24

Pollack, J.B. (1991). The induction of dynamical recognizers. Machine Learning, 7, 227-252.

Savage, J.E. (1998). Models of Computation: Exploring the Power of Computing. (Addison-
Wesley, Reading, MA).

Shepherd, G.M. (1988). A basic circuit for cortical organization. In: Perspectives in Memory
Research, M. Gazzaniga, Ed. (MIT Press), 93-134.

Siegelmann, H., & Sontag, E.D. (1994). Analog computation via neural networks. Theoretical
Computer Science, 131: 331-360

Tsodyks, M., Uziel, A., & Markram, H. (2000). Synchrony generation in recurrent networks with
frequency-dependent synapses. J. Neuroscience, Vol. 20 RC50.

Vapnik, V.N. (1998). Statistical Learning Theory. John Wiley, New York.

von Melchner, L., Pallas, S.L., & Sur, M. (2000). Visual behaviour mediated by retinal projection
directed to the auditory pathway. Nature, 2000 Apr 20; 404:871-6.

25

Appendix A: Mathematical Theory

We say that a class CB of filters has the point-wise separation property with regard to
input functions from nU if for any two functions nUvu ∈⋅⋅)(),(with)()(svsu ≠ for some 0≤s
there exists some filter CBB ∈ that separates)(⋅u and)(⋅v , i.e.,)0)(()0)((BvBu ≠ . Note that it is
not required that there exists a filter CBB ∈ with)0)(()0)((BvBu ≠ for any two functions

nUvu ∈⋅⋅)(),(with)()(svsu ≠ for some 0≤s . Simple examples for classes CB of filters that have

this property are the class of all delay filters)()(0 ⋅⋅ tuu a (for R∈0t), the class of all linear

filters with impulse responses of the form ateth −=)(with 0>a , and the class of filters defined
by standard models for dynamic synapses, see (Maass and Sontag, 2000). A liquid filter ML of a
LSM M is said to be composed of filters from CB if there are finitely many filters mBB ,,1 K in

CB – to which we refer as basis filters in this context – so that))((,),)(())((1 tuBtuBtuL m
M K=

for all R∈t and all input functions)(⋅u in nU . In other words: the output of ML for a particular
input u is simply the vector of outputs given by these finitely many basis filters for this input u.

A class CF of functions has the approximation property if for any N∈m , any compact
(i.e., closed and bounded) set mX R⊆ , any continuous function R→Xh : and any given 0>ρ
there exists some f in CF so that that ρ≤−)()(xfxh for all Xx ∈ . The definition for the case
of functions with multi-dimensional output is analogous.

Theorem 1: Consider a space nU of input functions where
[]{ }RR ∈−⋅≤−−→= ststBsutuBBuU , allfor ')()(: ,: for some 0', >BB (thus U is a

class of uniformly bounded and Lipschitz-continuous functions). Assume that CB is some
arbitrary class of time invariant filters with fading memory that has the point-wise separation
property. Furthermore, assume that CF is some arbitrary class of functions that satisfies the
approximation property. Then any given time invariant filter F that has fading memory can be
approximated by LSMs with liquid filters ML composed from basis filters in CB and readout
maps Mf chosen from CF . More precisely: For every 0>ε there exist N∈m , CBBB m ∈,...,1

and CFf M ∈ so that the output)(⋅y of the liquid state machine M with liquid filter ML

composed of mBB ,...,1 , i.e.,))((,),)(())((1 tuBtuBtuL m
M K= , and readout map Mf satisfies for

all nUu ∈⋅)(and all R∈t ε)())((≤− tytFu .

The proof of this theorem follows from the Stone-Weierstrass Approximation Theorem,
similarly as the proof of Theorem 1 in Boyd & Chua (1985).One can easily show that the inverse
of Theorem 1 also holds: If the functions in CF are continuous, then any filter F that can be
approximated by the liquid state machines considered in Theorem 1 is time invariant and has
fading memory. In combination with Theorem 1, this provides a complete characterization of the
computational power of LSMs.

26

In order to extend Theorem 1 to the case where the inputs are finite or infinite spike trains,
rather than continuous functions of time, one needs to consider an appropriate notion of fading
memory for filters on spike trains. The traditional definition, given in footnote 4, is not suitable
for the following reason. If)(⋅u and)(⋅v are functions with values in {0, 1} that represent spike

trains and if 1≤δ , then the condition δ<−)()(tvtu is too strong: it would require that
)()(tvtu = . Hence we define for the case where the domain U consists of spike trains (i. e. 10 −

valued functions) that a filter knUF)(: RR→ has fading memory on spike trains if for every
n

n Uuuu ∈= ,...,1 and every 0>ε there exist 0>δ and Í∈m so that ε<−)0)(()0)((FuFv

for all n
n Uvvv ∈= ,...,1 with the property that for i = 1,...,n the last m spikes in vi (before time 0

) each have a distance of at most δ from the corresponding ones among the last m spikes in iu .
Intuitively this says that a filter has fading memory on spike trains if the most significant bits of
the filter output can already be determined from the approximate times of the last few spikes in
the input spike train. For this notion of fading memory on spike trains one can prove:

Theorem 2: Consider the space nU of input functions where U is the class of spike
trains with some minimal distance ∆ between successive spikes (e. g., ∆ = 1 ms). Assume that
CB is some arbitrary class of time invariant filters with fading memory on spike trains that has
the point-wise separation property. Furthermore, assume that CF is some arbitrary class of
functions that satisfies the approximation property. Then any given time invariant filter F that
has fading memory on spike trains can be approximated by liquid state machines with liquid
filters ML composed from basis filters in CB and readout maps Mf chosen from CF .

The proof for Theorem 2 is obtained by showing that for all filters F fading memory on
spike trains is equivalent to continuity with regard to a suitable metric on spike trains that turns
the domain of spike trains into a compact metric space. Hence, one can apply the Stone-
Weierstrass Approximation Theorem also to this case of computations on spike trains.

Appendix B: Details of the Computer Simulation

We used a randomly connected circuit consisting of 135 integrate-and-fire neurons, 20%
of which were randomly chosen to be inhibitory, as a single "column" of neural circuitry
(Tsodyks et al., 2000). Neuron parameters: membrane time constant 30ms, absolute refractory
period 3ms (excitatory neurons), 2ms (inhibitory neurons), threshold 15mV (for a resting
membrane potential assumed to be 0), reset voltage 13.5mV, constant nonspecific background
current Ib =13.5nA, input resistance 1 MΩ.

Connectivity structure: The probability of a synaptic connection from neuron a to neuron
b (as well as that of a synaptic connection from neuron b to neuron a) was defined as

2)/),((λbaDeC −⋅ , where λ is a parameter which controls both the average number of connections
and the average distance between neurons that are synaptically connected. We assumed that the
135 neurons were located on the integer points of a 15×3×3 column in space, where),(baD is

27

the Euclidean distance between neurons a and b. Depending on whether a and b were excitatory
(E) or inhibitory (I), the value of C was 0.3 (EE), 0.2 (EI), 0.4 (IE), 0.1 (II).

In the case of a synaptic connection from a to b we modeled the synaptic dynamics
according to the model proposed in (Markram et al., 1998), with the synaptic parameters U
(use), D (time constant for depression), F (time constant for facilitation) randomly chosen from
Gaussian distributions that were based on empirically found data for such connections.
Depending on whether ba, were excitatory (E) or inhibitory (I), the mean values of these three
parameters (with FD, expressed in second, s) were chosen to be .5, 1.1, .05 (EE), .05, .125, 1.2
(EI), .25, .7, .02 (IE), .32, .144, .06 (II). The SD of each parameter was chosen to be 50% of its
mean (with negative values replaced by values chosen from an appropriate uniform distribution).
The mean of the scaling parameter A (in nA) was chosen to be 30 (EE), 60 (EI), -19 (IE), -19 (II).
In the case of input synapses the parameter A had a value of 18 nA if projecting onto a excitatory
neuron and 9.0 nA if projecting onto an inhibitory neuron.). The SD of the A parameter was
chosen to be 100% of its mean and was drawn from a gamma distribution. The postsynaptic
current was modeled as an exponential decay exp(-t/τs) with τs=3ms (τs=6ms) for excitatory
(inhibitory) synapses. The transmission delays between liquid neurons were chosen uniformly to
be 1.5 ms (EE), and 0.8 for the other connections. For each simulation, the initial conditions of
each leaky-integrate and fire neuron, i.e. the membrane voltage at time t=0, were drawn randomly
(uniform distribution) from the interval [13.5mV, 15.0mV]. Together with the spike time jitter in
the input these randomly drawn initial conditions served as implementation of noise in our
simulations (in order to test the noise robustness of our approach).

Readout elements used in the simulations of Figures 3, 8, and 9 were made of 51
integrate-and-fire neurons (unconnected). A variation of the perceptron learning rule (the delta
rule, see (Hertz et al., 1991)) was applied to scale the synapses of these readout neurons: the p-
delta rule discussed in (Auer et al., 2001). The p-delta rule is a generalization of the delta rule that
trains a population of perceptrons to adopt a given population response (in terms of the number of
perceptrons that are above threshold), requiring very little overhead communication. This rule,
which formally requires to adjust the weights and the threshold of perceptrons, was applied in
such a manner that the background current of an integrate-and-fire neuron is adjusted instead of
the threshold of a perceptron (while the firing threshold was kept constant at 15mV). In Fig. 8
and 9 the readout neurons are not fully modeled as integrate and fire neurons, but just as
perceptrons (with a low pass filter in front that transforms synaptic currents into PSPs, time
constant 30 ms); in order to save computation time. In this case the "membrane potential" of each
perceptron is checked every 20 ms, and it is said to "fire" at this time point if this "membrane
potential" is currently above the 15 mV threshold. No refractory effects are modeled, and no reset
after firing. The percentage of readout neurons that fire during a 20 ms time bin is interpreted as
the current output of this readout module (assuming values in [0 , 1]).

In the simulations for Figures 5, 6, and 7 we used just single perceptrons as readout
elements. The weights of such a single perceptron have been trained using standard linear
regression: the target value for the linear regression problem was +1 (-1) if the perceptron should
output 1 (0) for the given input. The output of the perceptron after learning was 1 (0) if the
weighted sum of inputs was ≥ 0 (< 0).

