PCSIM : A Parallel Neural Clircuit
SIMulator

Version 0.5.0
User Manual

(©2008 The PCSIM Group

www.igi.tugraz.at/pcsim

April 19, 2008

This document is part of PCSIM Release 0.5.0
Copyright 2008 The PCSIM group

PCSIM is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2, or (at your option) any later version.

PCSIM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.

To get a copy of the GNU General Public License point your browser to http://www.gnu.org/copyleft/gpl.html.

The PCSIM group

Institute for Theoretical Computer Science
Graz University of Technology

Inffeldgasse 16/b, A-8010 Graz, AUSTRIA
www.igi.tugraz.at/pcsim

www.igi.tugraz.at/pcsim
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html
www.igi.tugraz.at/pcsim

Contents

1 Preliminaries

1.1 What is PCSIM? s
1.2 About this Manual
1.3 Features of the current version

2 Installing PCSIM

2.1 Recipe for the impatient o o
2.2 Dependencies Lo e
2.3 Installing from the source distribution

3 Getting Started

3.1 Starting PCSIM o
3.2 The basis: Creating anetwork
3.3 Adding objects to the network oL
3.4 Connecting objects L
3.5 Simulating the model oo
3.6 Analysing the simulation oL

4 A more realistic examples

5 Adding user defined models

N ot ot w W w W

©

10
10
11
11
11

14

17

Chapter 1

Preliminaries

1.1 What is PCSIM?

PCSIM is a tool for simulating heterogeneous networks composed of different model neurons
and synapses. This simulator is written in C4++ with a primary interface to the programming
language python . It is intended to simulate networks containing up to millions of neurons
and on the order of billions of synapses. This is achieved by distributing the network over
different nodes of a compute cluster by using MPI.

1.2 About this Manual

THIS MANUAL IS UNDER CONSTRUCTION!

This manual is intended to describe how to use PCSIM from the (python) users point
of view. It does not try to explain (or give an introduction to) the type of models
which can be simulated with PCSIM . Regarding neural modeling we refer the reader to
[Dayan and Abbott, 2001] and [Gerstner and Kistler, 2002]. Furthermore python program-
ming knowledge is assumed.

This manual is also available in HTML format.

1.3 Features of the current version

Easy to use python interface Since PCSIM is incorporated into python it is not necessary
to learn any other script laguage to set up the simulation. This is all done with python
scripts. Furthermore the results of a simulation are directly returned as python ar-
rays and hence any plotting and analysis tools available in python (via the matplotlib
package) can easily be applied.

Distributed Simulation Via MPI

Different levels of modeling Different neuron models: leaky-integrate-and-fire neurons,
compartmental based neurons, sigmoidal neurons. Different synapse models: static

http://www.python.org
http://www-unix.mcs.anl.gov/mpi/
http://www.python.org/
http://www.lsm.tugraz.at/pcsim/usermanual/html/index.html
http://matplotlib.sourceforge.net/

synapses and a certain model of dynamic synapses are available for spiking as well as
for sigmoidal neurons. Spike time dependent synaptic plasticity is also implemented.

Object oriented design We adopted an object oriented design for PCSIM which is similar
to the approaches taken in GENESIS and NEURON. That is there are objects (e.g. a
LifNeuron object implements the standard leaky-integrate-and-fire model) which are
interconnected by means of some signal channels. The creation of objects, the connec-
tion of objects and the setting of parameters of the objects is controlled at the level of
python scipts whereas the actual simulation is done in the fast C++ core.

Fast C++ core Since PCSIM is implemented in C++ and is not yet as general as GEN-
ESIS or NEURON simulations are performed quite fast. We also implemented some
ideas from event driven simulators like SpikeNet which result on an average speedup
of 3 (assuming an average firing rate of the neurons of 20 Hz and short synaptic time
constants) compared to a standard fixed time step simulation scheme.

GPL Licensed PCSIM is distributed under the GNU General Public License

http://www.bbb.caltech.edu/GENESIS/genesis.html
http://www.neuron.yale.edu
http://www.cnl.salk.edu/~arno/spikenet/
http://www.gnu.org/copyleft/gpl.html

Chapter 2

Installing PCSIM

2.1 Recipe for the impatient

Theoretically the following commands are sufficient to install PCSIM globally on your Linux
box if you have the neccessary write permissions and all the required software packages
(Sec. 2.2) are already properly installed:

wget ’http://downloads.sourceforge.net/pcsim/pypcsim-0.5.0.tar.gz’
tar xvzf pypcsim-0.5.5.tar.gz

cd pypcsim-0.5.5

python setup.py install

python setup.py test

2.2 Dependencies

PCSIM depends on several third party software packages. However, most modern Linux
distributions have most of the necessary software packages in their package repositories, or
for some there are binary packages (rpm or dpkg) on the home page of the software. If
possible, for the sake of simplicity of the installation process, the user should prefer installing
these binary packages, instead of compiling them from the source release. For example for
openSUSE 10.2 and 10.3 with the exception of GCCXML and the pure python packages
pygeexml and Py++ for any of the following packages there is a binary RPM distribution
available which can conviniently be installed using Yast or easiliy be found via http://
packages.opensuse-community.org/.

In the following we list all the packages needed in order to compile PCSIM from its source
distribution. However only packages marked with ** are strictly required after PCSIM is
compiled (e.g. when using a pre-compiled PCSIM library). Packages marked with * are
neccessary only if PCSIM is linked dynamically against them (which is preferable and hance
the default).

1. Python (>2.4)** The primary interface for using PCSIM is based on the modern scriptin
language python. This languae is used to setup and control PCSIM simulations.

http://packages.opensuse-community.org/
http://packages.opensuse-community.org/

10.

Home: http://www.python.org, Download: http://www.python.org/download/

CMake (>2.4-patch8) CMake is the build tool which is used to compile the C++ part
of PCSIM .

Home: http://www.cmake.org, Download: http://www.cmake.org/HTML/Download.
html

Doxygen (>1.5.3) Doxygen is used to generate source documentation and to parse C+-+
source code to generate certain kind of wrapper code needet to allow for convienient
access of properties of simulated objects.

Home: http://www.doxygen.org, Download: http://www.stack.nl/~dimitri/
doxygen/download.html

elementtree This python module is used to parse the XML output of doxygen to generate
the above mentioned wrapper code. As of python 2.5 this is contained in the python
distribution.

Home: http://wuw.effbot.org/zone/element-index.htm, Download: http://www.
effbot.org/downloads/#elementtree

Boost C++ (>1.33.1)* These libraries can not be avoided for any serious C++ project.
Home: http://www.boost.org, Download: http://sourceforge.net/project/
showfiles.php?group_id=7586

MPI** The message passsing interface standard is used for distributed simulations. We
are developing PCSIM with MPICH2 (1.0.6p1)

Home: http://www.mcs.anl.gov/research/projects/mpich2, Download: http://
www.mcs.anl.gov/research/projects/mpich2/downloads/index.php?s=downloads
Note: On openSUSE 10.2 we compiled this from the sources since for some reasons the
available RPM packages did not work.

cppunit (>1.12.1) This unit test framework for C++ is used for testing the C++ core
of PCSIM.

Home: http://sourceforge.net/projects/cppunit, Download: https:
//sourceforge.net/project/showfiles.php?group_id=11795

GSL - GNU Scientific Library (>1.9)* This library provides many useful methods for
scientific computing. For example a library of methods for numeric integration.

Home: http://www.gnu.org/software/gsl, Download: ftp://ftp.gnu.org/gnu/
gsl/gsl-1.10.tar.gz

GCCXML (>0.9) This code parser generates an XML description of C++ code. Such
a description is used py Py++ (see below) to generate the python interface code.
Home: http://www.gccxml.org, Download: GCCXML can
only be downloaded from the development CVS repository
:pserver:anoncvsQuww.gccxml.org: /cvsroot/GCC_XML

pygeexml and Py++ (>0.9.5): These two powerful tools are used to generate the code
which interfaces the PCSIM C++ library with python.

Home: http://www.language-binding.net, Download: http://sourceforge.net/
project/showfiles.php?group_id=118209

http://www.python.org
http://www.python.org/download/
http://www.cmake.org
http://www.cmake.org/HTML/Download.html
http://www.cmake.org/HTML/Download.html
http://www.doxygen.org
http://www.stack.nl/~dimitri/doxygen/download.html
http://www.stack.nl/~dimitri/doxygen/download.html
http://www.effbot.org/zone/element-index.htm
http://www.effbot.org/downloads/#elementtree
http://www.effbot.org/downloads/#elementtree
http://www.boost.org
http://sourceforge.net/project/showfiles.php?group_id=7586
http://sourceforge.net/project/showfiles.php?group_id=7586
http://www.mcs.anl.gov/research/projects/mpich2
http://www.mcs.anl.gov/research/projects/mpich2/downloads/index.php?s=downloads
http://www.mcs.anl.gov/research/projects/mpich2/downloads/index.php?s=downloads
http://sourceforge.net/projects/cppunit
https://sourceforge.net/project/showfiles.php?group_id=11795
https://sourceforge.net/project/showfiles.php?group_id=11795
http://www.gnu.org/software/gsl
ftp://ftp.gnu.org/gnu/gsl/gsl-1.10.tar.gz
ftp://ftp.gnu.org/gnu/gsl/gsl-1.10.tar.gz
http://www.gccxml.org
http://www.language-binding.net
http://www.language-binding.net
http://sourceforge.net/project/showfiles.php?group_id=118209
http://sourceforge.net/project/showfiles.php?group_id=118209

The source distribution of PCSIM also contains the file HowTo-Install-PCSIM-Dependencies-
Linux.txt which describes how to install the above mentioned packages form their source
distribution.

IMPORTANT NOTE: Paths to all installed libraries (boost, mpich2, gsl, cppunit) should
be added to LD_LIBRARY PATH if they are installed in non-standard locations, so that the
PCSIM build system can find them!

2.3 Installing from the source distribution

1. Downloaded the source distribution from http://www.igi.tugraz.at/pcsim or di-
rectly from the project site at sourceforge.

wget ’http://downloads.sourceforge.net/pcsim/pypcsim-0.5.0.tar.gz’
2. Unpack the downloaded compress archive file. E.g.
tar xvzf pypcsim-0.5.5.tar.gz

3. Change to the newly created directory. We will refer to this as ${PCSIM_ROOT_DIR} in
the following.

cd pypcsim-0.5.5
4. Run the python setup script in the PCSIM-root directory:
python setup.py install —--prefix=<pcsim install dir>

Without the prefix, PCSIM is installed in the standard install location (usually /usr)
which depends on your python installation, i.e. a global installtion is done and you
need the neccessary write permissions. For other available options and commands of
the setup script run python setup.py --help.

The command python setup.py install invokes several cmake instances which gen-
erate the python interface wrapper code, compile the C++ code, create the binaries
and install them. The installation creates the following files locally in the PCSIM-root
directory:

e ${PCSIM_ROOT_DIR}/bin/pcsim_test Executable which runs all PCSIM unit tests

e ${PCSIM_ROOT_DIR}/1lib/libpcsim.so PCSIM shared library object. A dynamic
library wich contains the core functionality of PCSIM .

e ${PCSIM_ROOT_DIR}/1ib/pypcsim.so PyPCSIM python extension module. A dy-
namic library which contains the python interface to PCSIM an can be loaded via
the python import command import pypcsim.

Additionaly, the following files are copied to the chosen installation locations:

e libpcsim.so PCSIM shared library object (copied to
<prefix-dir>/1ib/libpcsim.so)

http://www.lsm.tugraz.at/pcsim/HowTos/HowTo-Install-PCSIM-Dependencies-Linux.txt
http://www.lsm.tugraz.at/pcsim/HowTos/HowTo-Install-PCSIM-Dependencies-Linux.txt
http://www.igi.tugraz.at/pcsim
http://sourceforge.net/projects/pcsim
http://sourceforge.net/projects/pcsim
http://www.sourceforge.net

e pypcsim.so PyPCSIM python extension module (copied to
<prefix-dir>/lib/python2.x/site-packages/pypcsim.so)

To do a local installation and skip the copying of the libraries to the install directories,
execute:

python setup.py install -1

In this case one has to set the path environment variables to the localy created library
files, as explained in step 6.

5. Run the tests
python setup.py test

6. For the installation to work one has to make sure that the environment variables
LD_LIBRARY_PATH and PYTHONPATH contain the installation location you have choosen
during installation. For a global installtion this should be the case anyway. However,
for a local installation it is likely that you have to add the paths to 1ibpcsim.so and
pypcsim.so to the LD_LIBRARY_PATH and PYTHONPATH environment variables manually:
For bash:

export LD_LIBRARY_PATH ${PCSIM_ROOT_DIR}/lib:${LD_LIBRARY_PATH}
export PYTHONPATH ${PCSIM_ROOT_DIR}/lib:${PYTHONPATH}

For csh/tcsh:

setenv LD_LIBRARY_PATH ${PCSIM_ROOT_DIR}/1ib:${LD_LIBRARY_PATH}
setenv PYTHONPATH=${PCSIM_ROOT_DIR}/lib:${PYTHONPATH}

Put the previous lines in your .profile or .tcshrc depending on the shell you are
using.

7. If you also want to install the python packages accompanying PCSIM (currently only
pypcsimplus):
python setup_pkg.py install

For other available options and commands of the setup script run
python setup_pkg.py --help. Additionally you need to add ${PCSIM_ROOT_DIR} to
PYTHONPATH.

For bash:

export PYTHONPATH=${PCSIM_ROOT_DIR}:${PYTHONPATH}

For csh/tcsh:

setenv PYTHONPATH ${PCSIM_ROOT_DIR}:${PYTHONPATH}

Put the previous line in your .profile or .tcshrc depending on the shell you are using.

8. If your reached this point with all tests passed, you made it!

(usage: pcsim_test <AutoBuild|Nightly>ormpirun -np 4 pcsim_test <AutoBuild|Nightly>

)

Chapter 3

Getting Started

In this section we will introduce PCSIM by means of a simple example. We will use PCSIM
to simulate a model where a leaky-integrate-and-fire (Sec. ??7) neuron (LIF neuron) is driven
by a (hand made) spike train which is transmitted by a dynamic synapse (Sec. ?77?).

input spike train LIF neuron output spike train

LETT 1 7@—>III |

dynamic synapse

The full code of the following example is contained as the file first_model.py in the example
directory of the PCSIM package.

3.1 Starting PCSIM

Since PCSIM is a package which extends python we first have to start python. E.g. on the
command prompt just enter python . After this you should see something like:

Python 2.5 (r25:51908, Nov 27 2006, 19:14:46)

[GCC 4.1.2 20061115 (prerelease) (SUSE Linux)] on linux2

Type "help", "copyright", "credits" or "license" for more information.
>>>

After the python interpreter has been started one has to load the PCSIM python module
pypcsim

>>> from pypcsim import *

which makes all the functionality of PCSIM available in the python environment.

http://www.igi.tugraz.at/pcsim

3.2 The basis: Creating a network

The most important concept of a PCSIM simulation is the metwork. A network consists of
different kinds of objects wich are linked together by certain message channels. Hence the
construction of each PCSIM simulation starts out with the construction of an (initially empty)
network.

>>> net = SingleThreadNetwork()

When we will discuss how to run a distributed simulation (Sec. ?7) we will see that there
are different types of networks available. For the moment we will use SingleThreadNetwork
which is the simplest one.

3.3 Adding objects to the network

Each element /entity of the simple model we will implement, will be simulated by a correspond-
ing object in PCSIM . The following table shows the correspondence between the elements of
the model and the class of the object used to simulate the element

element of model | class of PCSIM object

input spike train SpikingInputNeuron
dynamic synapse DynamicSpikingSynapse
LIF neuron LifNeuron

Hence, for the simulation to run one must create models of each entity we want to simulate
by creating an instance of the corresponding class:

>>> input = SpikingInputNeuron()
>>> synapse = DynamicSpikingSynapse())
>>> neuron = LifNeuron()

The code above generates models with the detault parameters. For simple models like the
LifNeuron it is convinient to set its parameter directly when defining the model.!

>>> inp_model
>>> nrn_model
>>> syn_model

SpikingInputNeuron([0.01, 0.02, 0.03, 0.05, 0.1, 0.15 1)
LifNeuron(Cm=2e-10, Rm=1e8, Vthresh=-50e-3, Inoise=0.8e-9)
DynamicSpikingSynapse(W=2e-8, tau=5e-3, delay=1e-3)

It is important to note that the three created instances do not have any relation to the network
net at the moment. In order to create object instances within the network we have to call
net.create:

>>> inp_handle = net.create(inp_model)
>>> nrn_handle = net.create(nrn_model)

1See the PCSIM class reference for detailed information about the parameters of individual models.

10

The effect of the create method is that a object instance are created from the object model?.
passed as arument to create. The value returned from create is a handle or id to the actual
object instance which is managed by the network.

3.4 Connecting objects

Now that we have the created the input neuron and the leaky-intagrate and fire neuron we
want to connect them by the synapse. This is as easy as:

>>> syn_handle = net.connect(inp_handle, nrn_handle, syn_model)

The effect of the above command is that an object instance based on syn_model is created
and a handle to it is returned.

3.5 Simulating the model

From the point of the model we want to simulate we are already done and we could issue the
following command to simulate the network for a time span of 200ms.

>>> net.simulate(0.2)

3.6 Analysing the simulation

After the simulate command one wants to examin what was going on during the simulation.
However we have not yet told to the simulator what we are interested in. In PCSIM this is
done by connecting so called recorders.

In order to record the spikes which are emitted by the neuron we have to create a
SpikeTimeRecorder and connect the spiking output of the neuron to it:

>>> st_rec_handle = net.record(nrn_handle, SpikeTimeRecorder())

To record the membrane potetial we have to create a AnalogRecorder and connect the
membrane potential to it.

>>> vm_rec_handle = net.record(nrn_handle, "Vm", AnalogRecorder())
And similarly for the postsynaptic current of the synapse:
>>> ps_rec_handle = net.record(syn_handle, "psr", AnalogRecorder())

Let us do the simulation again, starting at ¢t = 0:

2 Actually these models are object factories from which the actual simulated object instances will be created

11

>>> net.reset()
>>> net.simulate(0.2)

Now the recordes have the stored the parameters of interest. These can now be analysed
and plotted. The following code shows how to generate a figure using matplotlib and numpy
which is actually a must have when doing serious numeric compuations with python.

>>> from pylab import *
>>> from numpy import *

>>> clf ()
>>> dt = net.simParameter().dt.in_sec()
>>> t = arange(0, 0.2-dt, dt)

>>> subplot(4,1,1)

>>> stem(input_spike_times, ones_like(input_spike_times))
>>> x1im(0, 0.2); xticks([]1)

>>> title(’input spikes’)

>>> subplot(4,1,2)

>>> psc = net.object(ps_rec_handle).getRecordedValues()
>>> plot(t, psc)

>>> x1im(0, 0.2); xticks([])

>>> title(’postsynaptic current [A]’)

>>> subplot(4,1,3)

>>> vm = net.object(vm_rec_handle).getRecordedValues()
>>> plot(t,vm)

>>> x1im(0, 0.2); ylim(-0.07, -0.04); xticks([])
>>> title(’membrane voltage [V]’)

>>> subplot(4,1,4)

>>> recorded_spike_times = net.object(st_rec_handle).getSpikeTimes ()
>>> stem(recorded_spike_times, ones_like(recorded_spike_times))

>>> x1im(0, 0.2)

>>> xlabel(’time [sec]’)

>>> title(’recorded spikes’)

>>> show()

The code above generates the following figure:

12

http://matplotlib.sourceforge.net/
http://numpy.scipy.org/

input spikes

1.0

0.8

0.6

0.4}

0.2}

0.0

,xle9 postsynaptic current [A]
6l

5|

al

3|

P1s

1t

0

membrane voltage [V]

-0.045
-0.050
-0.055f
-0.060
-0.065

-0.070

recorded spikes
1.0

0.8}

0.6

04

0.2F

0'8.[]() 0.05 0.10 0.15 0.20
time [sec]

Remarks

e The statement net.object(h) is neccessary to get the actual instance of an object
with handle h from the network. In the code above these have been recorder. But we
can as well access for examples the synapse or the neuron:

>>> print net.object(nrn_handle).getVm()
-0.0620427952915

>>> print net.object(syn_handle).psr
0.0

e The command dt = net.simParameter().dt.in_sec() returns the currently used
simulation time step.

13

Chapter 4

A more realistic examples

In this section we will describe the usage of PCSIM by using a more realistic example. We
will implement the model defined as “Benchmark 3: Conductance based HH network” in
Simulation of networks of spiking neurons: A review of tools and strategies. This network
is composed of Hudgkin and Huxly type neurons coupled by conductance based synapses.
Furthermore we will learn how to perform a distributed simulation with PCSIM .

The full source code of this example is available as examples/examplel.py

from pypcsim import *
import random
import numpy as N

nNeurons = 4000; # number of neurons

minDelay = le-3; # minimum synapse delay [sec]

ConnP = 0.02; # connectivity probability

Frac_EXC = 0.8; # fraction of excitatory neurons

Tsim =0.1; # duration of the simulation [sec]

DTsim = le-4; # simulation time step [sec]

nRecordNeurons = 25; # number of neurons to plot the spikes from

Tinp = 50e-3; # length of the initial stimulus [sec]

nInputNeurons = 10 ; # number of neurons which provide initial input (for a time span of
inpConnP = 0.01 ; # connectivity from input neurons to network neurons
inputFiringRate = 80; # firing rate of the input neurons during the initial input [spikes

SimParameter, DistributedSingleThreadNetwork

sp = SimParameter(dt=Time.sec(DTsim) , minDelay = Time.sec(minDelay), simulationRNGSeed =
net = DistributedSingleThreadNetwork(sp)

SimObjectVariationFactory HHNeuronTraubMiles91 UniformDistribution
exz_nrn_model = SimObjectVariationFactory(HHNeuronTraubMiles91())

14

http://arxiv.org/abs/q-bio.NC/0611089
http://www.lsm.tugraz.at/pcsim/examples/example1.py
http://www.lsm.tugraz.at/pcsim/pyclassreference/html/pypcsim.SimParameter-class.html
http://www.lsm.tugraz.at/pcsim/pyclassreference/html/pypcsim.DistributedSingleThreadNetwork-class.html
http://www.lsm.tugraz.at/pcsim/pyclassreference/html/pypcsim.SimObjectVariationFactory-class.html
http://www.lsm.tugraz.at/pcsim/pyclassreference/html/pypcsim.HHNeuronTraubMiles91-class.html
http://www.lsm.tugraz.at/pcsim/pyclassreference/html/pypcsim.UniformDistribution-class.html

exz_nrn_model.set("Vresting", UniformDistribution(-50e-3, -48e-3))
exz_nrn_model.set("Cm", UniformDistribution(1.5e-10, 2.5e-10))

inh_nrn_model SimObjectVariationFactory(HHNeuronTraubMiles91());
inh_nrn_model.set("Vresting", UniformDistribution(-55e-3, -50e-3))
inh_nrn_model.set("Cm", UniformDistribution(2.2e-10, 2.7e-10))

num_exz = int(nNeurons * Frac_EXC)
num_inh = nNeurons - num_exz

exz_nrn = net.create(exz_nrn_model, num_exz);
inh_nrn = net.create(inh_nrn_model, num_inh);

all_nrn = list(exz_nrn) + list(inh_nrn);
StaticCondExpSynapse

exz_syn = SimObjectVariationFactory(StaticCondExpSynapse(W=2e-9, tau= 5e-3, delay=1e-3, Ere
exz_syn.set("tau", UniformDistribution(4e-3, 6e-3))

inh_syn = SimObjectVariationFactory(StaticCondExpSynapse(W=33e-9, tau=10e-3, delay=1le-3, Er
inh_syn.set("tau", UniformDistribution(9e-3, 13e-3))

RandomConnections

n_exz_syn = net.connect(exz_nrn, all_nrn, exz_syn, RandomConnections(conn_prob = ConnP))|
n_inh_syn = net.connect(inh_nrn, all_nrn, inh_syn, RandomConnections(conn_prob = ConnP))|

Create input neurons for the initial stimulus and connect them to random neurons in circuit

SpikingInputNeuron StaticCondExpSynapse

inp_nrn = [net.add(SpikingInputNeuron([random.uniform(0,Tinp) for x in range(int(inputFi

inp_syn = StaticCondExpSynapse(W=6e-9, tau=b5e-3, delay=le-3, Erev = 0)
net.connect(inp_nrn, all_nrn, inp_syn, RandomConnections(conn_prob = inpConnP))

SpikeTimeRecorder AnalogRecorder

spike_rec = range(len(all_nrn))

for i in range(len(all_nrn)):
spike_rec[i] = net.create(SpikeTimeRecorder(), SimEngine.ID(0,0))
net.connect(all_nrn[i], spike_rec[i] , Time.ms(1))

15

http://www.lsm.tugraz.at/pcsim/pyclassreference/html/pypcsim.StaticCondExpSynapse-class.html
http://www.lsm.tugraz.at/pcsim/pyclassreference/html/pypcsim.RandomConnections-class.html
http://www.lsm.tugraz.at/pcsim/pyclassreference/html/pypcsim.SpikingInputNeuron-class.html
http://www.lsm.tugraz.at/pcsim/pyclassreference/html/pypcsim.StaticCondExpSynapse-class.html
http://www.lsm.tugraz.at/pcsim/pyclassreference/html/pypcsim.SpikeTimeRecorder-class.html
http://www.lsm.tugraz.at/pcsim/pyclassreference/html/pypcsim.AnalogRecorder-class.html

rec_nrn = random.sample(all_nrn, nRecordNeurons);

vm_rec range (nRecordNeurons)
for i in range(nRecordNeurons):
vm_rec[i] = net.create(AnalogRecorder(), SimEngine.ID(0,0))

net.connect(rec_nrn[i], ’Vm’, vm_rec[i], O, Time.ms(1))

net.reset();
net.simulate(Tsim)

16

Chapter 5

Adding user defined models

In the file HowTo-Extend-PCSIM.txt it is described how to add your own models written in
C++ to PCSIM .

A more detailed description will be geiven here in the near future.

17

http://www.lsm.tugraz.at/pcsim/HowTos/HowTo-Extend-PCSIM.txt

Bibliography

[Dayan and Abbott, 2001] Dayan, P. and Abbott, L. (2001). Theoretical Neuroscience:
Computational and Mathematical Modeling of Neural Systems. MIT Press. See also
http://neurotheory.columbia.edu/~larry/book/.

[Gerstner and Kistler, 2002] Gerstner, W. and Kistler, W. (2002). Spiking Neuron Models.
Cambridge University Press. See also http://diwww.epfl.ch/~gerstner/BUCH.html.

18

http://neurotheory.columbia.edu/~larry/book/
http://diwww.epfl.ch/~gerstner/BUCH.html

	Preliminaries
	What is PCSIM?
	About this Manual
	Features of the current version

	Installing PCSIM
	Recipe for the impatient
	Dependencies
	Installing from the source distribution

	Getting Started
	Starting PCSIM
	The basis: Creating a network
	Adding objects to the network
	Connecting objects
	Simulating the model
	Analysing the simulation

	A more realistic examples
	Adding user defined models

