The “Liquid Computer”: A Novel Strategy for Real-Time
Computing on Time Series

Thomas Natschlager

tnatschl@igi.tu-graz.ac.at
www.igi.tugraz.at/tnatschl

Abstract

We will discuss in this survey article a new
framework for analysing computations on time
series and in particular on spike trains, intro-
duced in [1]. In contrast to common computa-
tional models this new framework does not re-
quire that information can be stored in some
stable states of a computational system. It has
recently been shown that such models where all
events are transient can be successfully applied
to analyse computations in neural systems and
(independently) that the basic ideas can also be
used to solve engineering tasks such as the de-
sign of nonlinear controllers.

Using an illustrative example we will develop
the main ideas of the proposed model. This il-
lustrative example is generalized and cast into a
rigorous mathematical model: the Liquid State
Machine. A mathematical analysis shows that
there are in principle no computational limita-
tions of liquid state machines in the domain of
time series computing. Finally we discuss sev-
eral successful applications of the framework in
the area of computational neuroscience and in
the field of artificial neural networks.

1 Introduction

The analysis of computation in neural systems
has often concentrated on the processing of
static stimuli. However, numerous ecologically
relevant signals have a rich temporal structure,
and neural circuits must process these signals
in real time. In many signal processing tasks,
such as audition, almost all of the information
is embedded in the temporal structure. In the
visual domain, movement represents one of the
fundamental features extracted by the nervous
system. Hence it is not surprising that in the

Wolfgang Maass

maass@Qigi.tu-graz.ac.at
www.igi.tugraz.at/maass

Henry Markram

Henry. Markram@weizmann.ac.il
WWw.wWeizmann.ac.il/neurobiology/
labs/markram/markram.html

last few years there has been increasing inter-
est in the dynamic aspects of neural processing.
Processing of real-world time-varying stimuli in
real-time is a difficult problem, and represents
an unsolved challenge for computational mod-
els of neural functions. Simultaneously in com-
puter science several areas such as for example
computer vision, robotics, and machine learn-
ing have also increased their efforts to deal with
dynamic real-world inputs.

Computational models that are commonly
used as conceptual basis for the investigation
of computations in biological neural systems
are Turing machines, finite state machines (au-
tomata), and attractor neural networks. These
models have in common that they can store bits
in a suitable number of stable states, for ex-
ample attractors (or limit cycles) of an attrac-
tor neural network. This capability appears to
be less ubiquitous in biological neural systems,
since its components exhibit a strong inherent
dynamics on several time scales, and in many
instances the only stable state is the “dead”
state. This observation has motivated us to in-
vestigate the question whether there are alter-
native computational models that do not have
to rely on states that remain stable, but rather
can be implemented in an environment where
all states are transient and are able to process
time-varying stimuli in real-time.

In order to approach this question with a fresh
mind, one might for example think of carrying
out computations in a liquid medium, such as
a cup of coffee. As motivated above, the type
of computation we want to consider are compu-
tations on time series, i.e. computations whose
inputs u(-) are functions of time, and whose out-
puts are again certain functions v(-) of time.
Such functions that map input time series u(-)
on output time series v(-) are usually called op-
erators in mathematics, but are commonly re-



output

Figure 1: The “liquid computer”. The “liquid”
(e.g. cup of coffee) gets as input a sequence of per-
turbations (e.g. spoon hits or sugar cubes dropped).
These perturbation are transformed in real-time
into “liquid states” (e.g. an image of the surface
of the liquid). A memory-less readout (in the sense
that it has no access to past states) transforms this
liquid states into the desired output time series.

ferred to as filters in engineering and neuro-
science. We use the term filter in the following.

In the example of computing with a liquid
one could for instance view as input time se-
ries the sequence of perturbations (for example
when a spoon hits the surface of the coffee or
sugar cubes that drop into the cup) that con-
tinually affect the liquid. The output could be
an online (at any time t) classification of the
sources of all perturbations that have recently
occurred, or a prediction of the next perturba-
tions that are to be expected. The output can
for example be computed by a laptop PC from
an image of the surface of the liquid which is
recorded with a digital camera. We call such a
setup the “liquid computer”.

Note that the idea of the “liquid computer”
is not restricted to the particular choice of the
liquid (cup of coffee) and the readout (camera
plus PC) given in this illustrative example; this
is discussed in more detail in Section 2.

An image of the surface of the liquid taken at
time ¢ can be considered as the current state of
the liquid or simple the liquid state x(t).! Tt is
obvious that computations in the “liquid com-
puter” can not relay on stable states since the
only stable state of the liquid is the “dead state”
(see Fig. 2), and all perturbations of the liquid
trigger transient events.

We will argue that for all interesting target

INote that such an image of the surface of the liquid
does not describe the full state of the liquid if consid-
ered as a dynamical system. The full state of a cup of
coffee considered as dynamical system would contain the
positions and velocities of all particles within the cup.

“dead” state

Figure 2: Images of the surface of the liquid are
considered as the states of the liquid. State 1 and 2
are generated by two different input time series, i.e.
series of perturbations (spoon hits and sugar cubes
dropped).

filters which one wants to implement with a “lig-
uid computer” it is sufficient to compute the
output via a suitable readout mechanism at any
time t only from the current state (t) of the lig-
uid. This will enable the “liquid computer” to
produce its output in real-time: it does not have
to wait explicitly until it has gathered enough
information to compute the output. In the ex-
ample of the “liquid computer” shown in Fig. 1
this means: to compute the output at time ¢
the PC only needs to access the image which
was taken at time ¢ but no other images taken
before time ¢, i.e. there is no need for the PC
to store images, or features of earlier images. In
other words: we propose the hypothesis that it
is sufficient to apply a memory-less device — in
the sense that it has no access to states prior
to time ¢ — as readout to compute the desired
output from the current state x(t) of the liquid.

How can a “liquid computer” implement a de-
sired target filter for which it is definitely nec-
essary to have access to inputs at times ' < ¢
to compute the output at time ¢ (e.g. output at
time ¢ the number of sugar cubes dropped into
the liquid within the last 2 seconds)? The basic
idea is that the current state x(t) at time ¢ of
the liquid has to hold all the relevant informa-
tion about the input. Informally this requires
that any two different input time series which
should produce different output time series put
the liquid into two (significant) different states
(see Fig. 2). If the liquid has this property it is
at least in principle possible to find a suitable
memory-less readout (in the sense that it has
no access to states prior to time t) to compute
the desired outputs in a real-time fashion.?

20f course a nowadays PC would have enough mem-
ory to record a whole stream of images during the last
2 seconds. However, if all relevant information to com-
pute the output v(t) at time t is already contained in



From this point of view one can interpret the
readout as a device which retrieves the desired
information about the input from the current
state of the liquid. Obviously this task of the
readout can be accomplished more easily if the
states of the liquid contain in a “clearly visible”
form the information about the input which the
readout is supposed to pick out. Which features
of the input are “clearly visible” in the states of
the liquid depend on the internal structure of
the liquid, for example on the type and range of
interaction between the individual elements the
liquid is composed of. In particular the inter-
nal structure of a liquid determines over which
time and spatial scales the inputs are integrated
(mixed) and produce the states of the liquid.
Hence the internal structure of the liquid deter-
mines how useful (for the readout) the states of
the liquid are. Unfortunately the internal struc-
ture of real liquids like coffee are such that it has
rather small time constants for relaxation, and
perturbations are propagated only through the
very local interaction between molecules. This
makes a cup of coffee less suitable as computa-
tional device.

However, neural circuits could constitute
ideal “liquids” because of the distributed inter-
actions between its elements (neurons) and the
large variety of time scales present in this sys-
tems. These characteristic features potentially
allow neural systems to function as an optimal
integrator of all kinds of sensory input. Optimal
in the sense that the state of the neural system
serves as a universal source of information about
present and past stimuli which can be used by a
simple readout mechanism (e.g. a single neuron)
to compute any desired output. In fact it was
found in [1] by computer simulations that mod-
els of small neural circuits can indeed be used as
a “liquid” and that readout maps can be trained
such that a given task is accomplished. Indepen-
dently the basic ideas of the “liquid computer”
have been investigated in [2] from an engineering
point of view. In that work artificial recurrent
neural networks (see e.g. [3]) have been used
as a “liquid” and simple linear readout func-
tions have been trained to fulfill several different

the state @(t) it is a) not necessary to store anything
about the past and b) wasteful to discard this informa-
tion since it would probably take more time to compute
the output v(t) from several images (about 50 images
for 2 seconds of history). Furthermore point b) would
imply that the output of the readout can not be given
in real-time anymore.

tasks.

In section 2 we will make these informal ideas
about the “liquid computer” more precise, and
discuss the general (and more formal) model in-
troduced in [1] for analysing computations on
time series: the liquid state machine (LSM). We
will formulate two simple conditions, the separa-
tion property and the approximation property,
which - if met - endow any LSM with in prin-
ciple universal computational power in the time
series domain. This analysis shows that devices
where the effects of the most common perturba-
tions are transient, can still be computationally
powerful. In section 3 we will discuss several
successful applications of the LSM approach.

2 The Liquid State Machine

A formal model of a “liquid computer”
The liguid state machine (LSM) introduced in
[1] is a mathematical model of the “liquid com-
puter”. Its basic structure is depicted in Fig. 3.

input w(-)

Cl liquid Cm

S R N O

: liquid state x(t) |

N /

L TR N N T

readout f

output v(t)

Figure 3: A mathematical model of the “liquid
computer”: the liquid state machine. The liquid
transforms the input into liquid states x(t), which
are mapped by the memory-less readout function f
to the output v(t) = f(x(t)).

A LSM consists of some liquid which trans-
forms the input time series u(-) into “liquid
states” x(t). A memory-less readout function



f maps the “liquid state” x(t) at time ¢ into the
output v(t) = f(x(t)). Note that there are no
assumptions about the concrete implementation
of the liquid and the readout function.

It is simply assumed that the liquid integrates
inputs u(t') for ¢ < t into liquid states z(t) for
all times ¢. From a dynamical systems point of
view the liquid is a non-autonomous dynamical
system (see [4]) and the time varying function
x(-) is the (usually high-dimensional) trajectory
of this system. One could think of the trajec-
tory «(-) as the output of an array C; ...,Cp, of
subsystems of the liquid which define the con-
tinuous state vector.

Universal computational power of LSMs
We now want to characterize which mappings
from input time series to output time series (i.e.
which filters) can be computed by LSMs. Can
only linear filters be implemented with a LSM
or is it also possible to implement complex non-
linear filters with an LSM?

In fact it turns out that there are only very
weak restrictions on what LSMs can compute: a
mathematical theorem [5] states that any time
imwariant filter with fading memory can be ap-
proximated with arbitrary precision by an LSM.

The condition that only time invariant filters
can be computed just exclude such exotic filters
where a simple time shift of the input causes
not only a time shift of the output but also a
different time course of the output. Also the re-
striction to filters with fading memory is rather
weak: it only states that an LSM can not com-
pute a filter that is discontinuous, or whose out-
put strongly depends on infinitely long input
histories. Hence one may argue that the class
of time invariant filters with fading memory in-
cludes practically any relevant filter from a bi-
ological as well as from an engineering point of
view. From this perspective one could say that
LSMs have universal computational power for
computations on time series.

Only two abstract and conceptually simple
properties have to be met to endow LSMs with
such universal computational power for com-
putations on time series: The class of compo-
nents from which the liquid is composed satis-
fies the point-wise separation property and the
class of functions from which the readout maps
are drawn, satisfies the approximation property:

Separation Property: All output-relevant differ-
ences in the preceding part of two input

time series wq(-) and wu2(-) (before time
t) are reflected in the corresponding liquid
states @1 (t) and @2 (t) of the system.

Approzimation Property: The readout has the
capability to approximate any given con-
tinuous function f that maps current liquid
states x(t) on current outputs v(¢).

Implementing specific target filters The
preceding results provide a new conceptual
framework for analyzing computations on time
series, such as spike trains. However they do
not yet address the question how to implement
an LSM such that it approximates a given tar-
get filter. One approach which directly emerges
from the LSM model is described in Fig. 4.

1) Choose a suitable liquid

2) Record liquid states x(t) at various time
points in response to numerous different
(training) inputs wu(-)

3) Apply a supervised learning algorithm
to a set of training examples of the form
(z(t),yy(t)) to train a readout function
f such that the actual outputs f(x(t))
are as close as possible to y,(t)

Figure 4: A general approach for implementing spe-
cific target filters with a LSM. y,(t) denotes the
output of the target filter at time ¢ if its input is

u(-).

If the liquid fulfills the separation property
and the readout function fulfills the approxima-
tion property, this procedure leads to an im-
plementation of a LSM which approximates the
given target filter. One advantage of this sim-
ple procedure is that it is not necessary to take
any temporal aspects into account for the su-
pervised learning task, since all temporal pro-
cessing is done implicitly in the liquid. Another
benefit of this procedure is that one can easily
implement several target filters in parallel using
the same liquid. One just has to train for each
target filter a separate readout function.

Despite its simplicity the above procedure has
one drawback: it does not specify which liquid
and which learning algorithm one should choose
to implement a given filter. For example, from
a theoretical point of view it would suffice to



choose the components of the liquid as a suit-
able collection of delay lines and to use a quite
powerful readout (e.g. a artificial neural net-
work, see e.g. [3] for regarding the details of
this approach). On the other hand, one of the
empirically most successful approaches in ma-
chine learning (support vector machines, see [6])
is based on the observation that almost all prac-
tically relevant classification tasks can be carried
out by a single perceptron if the inputs are first
projected into a very high dimensional space. In
the framework of LSMs this implies that if the
liquid transforms the inputs into a proper space
of liquid states, a very simple readout will suf-
fice to implement the given target filter. Hence
there is a trade-off between the complexity of
the liquid and the complexity of the readout.
The optimal point for this trade-off depends on
several factors, such as the type and number of
target filter which one wants to implement.

3 Applications of the LSM
approach

Computations on spike trains in recur-
rent neural microcircuits In [1] it was ex-
plored how well the LSM approach is applicable
to computations in models of neural systems.
The main issue investigated was how well small
recurrent neural circuits can be understood as
a “liquid”. A “liquid” in the sense that such
circuits function as a universal integrator of a
variety of stimuli.

The basic network model used in [1] is shown
in Fig. 5. A randomly connected network of bi-
ologically quite realistically model neurons was
employed as “liquid”. The input to this network
was via several spike trains. The readout func-
tion was implemented by another population of
model neurons that received input from all the
“liquid-neurons”. The fraction of neurons fir-
ing around time ¢ was interpreted as the out-
put of the readout. Using the general training
procedure described in Fig. 4, a readout func-
tion is trained to a specific task by adjusting
the synaptic strengths of the connections from
the “liquid” to the readout. To accomplish this
task a recently developed supervised learning al-
gorithm called p-delta rule was used (see [7] for
details about this learning algorithm).

All readout functions trained in this manner
used the same recurrent microcircuit (liquid) as

liquid readou

Figure 5: The basic network model investigated in
[1]. A randomly connected network of biologically
quite realistic model neurons was employed as “lig-
uid”. The readout function was implemented by
another population of model neurons that received
input from all the “liquid-neurons”. During train-
ing for a particular task only the synaptic strengths
of the connections from the “liquid” to the readout
(open circles) are modified.

(universal) source of information to compute the
desired output. The tasks assigned to the dif-
ferent readout maps were chosen such that each
one had a focus on another aspect of the in-
put. Results of computer simulations show that
such models of neural microcircuits can indeed
function as an optimal liquid since all considered
tasks can be performed with quit high accuracy.

Furthermore the issue how different connec-
tivity structures of neural microcircuits affect
the “usefulness of the liquid” was explored.
It turned out that there exists some optimal
regime of connectivity parameters for the neural
microcircuit. Optimal in the sense that inputs
are integrated (mixed) into the liquid state such
that the considered computational tasks were
performed with maximal accuracy. In other pa-
rameter ranges either the inputs are not inte-
grated (mixed) at all and hence no information
about past inputs is available in the liquid state,
or the circuits exhibit a chaotic behavior. If the
circuit exhibits chaotic behavior even the small-
est change in the input (which causes only small
changes in the target output) causes the liquid
to end up in a totally different state, and hence
the readout is usually not able to map such to-
tally different states to rather identical outputs.

These approach provides a new platform for
investigating through computer simulations the
structure and function of neural microcircuits,
for example to explore the computational ad-
vantages of the extreme complexity and diver-



sity of neurons, synapses, and specific connec-
tivity patterns found in the microcircuity of the
brain.

Computations on spike trains in feedfor-
ward networks Whereas in [1] recurrent cir-
cuits of spiking neurons were considered, in [8] a
much simpler type of liquid is investigated; see
Fig. 6.

input spike train

a set of synapses

as liquid | readout

Figure 6: The network of spiking neurons used in
[8]. The liquid consists of an array of biologically
realistic model synapses. As in [1] the readout is
another population of neurons. Its firing activity is
explicitly transformed into a spike train by the out-
put neuron v. Networks of this type can be trained
to behave like any given small finite state machine.

The liquid was just an array of biologically
realistic synapse models. It is known that
synapses are quite heterogeneous, i.e. produce
quit different outputs for the same input spike
train, even within a single neural circuit. In fact
these differences, which also vary from synapse
to synapse, can serve as short term memory
for a neural system, since the amplitude of the
postsynaptic response for the current spike con-
tains information about the preceding part of
the spike train. Hence the parameters for the
model synapses employed as liquid were drawn
from distributions in accordance with empirical
results (see e.g. [9]). The readout was imple-
mented as another pool of spiking neurons; as
in [1]. However, to demonstrate that the LSM
approach allows to construct circuits which im-
plement given mappings from input spike trains
to output spike trains the firing activity of the
readout pool was explicitly transformed into a
spike train using an extra single output neuron;
see Fig. 6.

The question explored in [8] was to what
extent such a simple neural circuit can carry
out arbitrarily complex computations on spike
trains. It was demonstrated by computer sim-
ulations that such a simple neural circuit can

be trained to behave like any given small finite
state machine. Finite state machines (FSM) are
frequently used in computer science as general
purpose models for computations on time series.
A FSM usually gets a bit-string as input and
produces as online output again a bit-string (in
our terminology it is a filter which operates on
bit strings).?

Since the finite state machines which were
used as target for the training were drawn ran-
domly, this result demonstrates impressively
the generality of the LSM approach. Further-
more these results show that the heterogeneity
of synapses enables a simple network of spik-
ing neurons to perform quite complex compu-
tational tasks. This might be understood as a
hint why the diversity of neurons and synapses
found in real neural system may be computa-
tionally advantageous.

Computations on analog time series The
main idea of the LSM was independently dis-
covered in [2]. The author of [2] considered an
artificial recurrent neural network (see e.g. [3])
as liquid.*

As a readout function he used a single unit
of the same type as the liquid is composed of.
Training of this single output unit amounts to
a linear regression problem, which is one of the
simplest “learning” algorithms one can think of.

The perspective taken is mainly that of math-
ematics and engineering, where a recurrent net-
work is seen as a computational device for re-
alizing a dynamical system (the liquid). Hence
the target filters (learning tasks considered) are
from a different nature as presented so far.
For example it is demonstrated that the quasi-
benchmark task of learning a chaotic attractor
can be accomplished by using the training ap-
proach depicted in Fig. 4. Another challenging
task which could be solved in this way is the
design of a controller for a pendulum (private
communication; not reported in [2]).

The most appealing features of this learning
algorithm for recurrent neural networks (which
emerges from the LSM model) compared to oth-
ers (see e.g. [3]) are its simplicity and robust-

3Note that bit-strings can easily converted to spike
trains and vice versa. Hence it is possible to compare a
FSM and the network depicted in Fig. 6.

4The network they used consists of N units. At
time step t unit ¢ computes the output z;(t + 1) =
tanh (Z] wij;cj(t)) where w;; is a parameter describ-
ing the connection strength between unit ¢ and j.



ness. These features stem from the fact that
only the parameters of a single unit are trained
and that this training can be done using linear
regression.

4 Summary

We have discussed a novel computational model
for analysing computations on time series in par-
ticular on spike trains: the “liquid computer” or
more formally the liquid state machine. In con-
trast to models that are inspired by the architec-
ture of the current generation of artificial com-
puting machinery it requires no storage of infor-
mation in stable states. We have formulated two
simple conditions, the separation property and
the approximation property, which together en-
dow liquid computers with virtually unlimited
computational power in the time series domain.

On a more practical level the LSM approach
provides a general method for training a com-
puter model of a neural microcircuit consisting
of biologically realistic models for neurons and
synapses, to carry out basically any given com-
putation on spike trains. Furthermore this gen-
eral method can also be applied in the domain of
artificial neural networks [2] and yields a simple
and robust learning algorithm. Applications of
this general method were discussed in Section 3.

To make the work on the LSM approach
more accessible to other people we are cur-
rently setting up web resources (accessible via
www.lsm.tugraz.at) regarding data, com-
puter models, and analysis tools for neural
microcircuits, which will be functional by fall
2002. In this webpage we will collect data
on the anatomy and physiology of neural
microcircuits from the lab by Markram (see
http://www.weizmann.ac.il/neurobiology/
labs/markram/markram.html) and others.
Furthermore it will provide software for com-
puter models of neural microcircuits that are
built according to these data, as well as files
with inputs for these circuits and tools for an-
alyzing the circuit outputs. In addition it will
offer implementations of learning algorithms by
which the readout neurons from these circuits
can be trained. In this way the user can not
only carry out his/her own computational
tests with these circuit models, but can also
investigate the merits of the LSM framework.

References

[1] W. Maass, T. Natschlager, and H. Markram.
Real-time computing without stable states: A
new framework for neural computation based
on perturbations. submitted for publication,
2001. electronically available via http://www.
igi.TUGraz.at/tnatschl/psfiles/130.pdf.

[2] H. Jaeger. The ”echo state” approach to
analysing and training recurrent neural net-
works. GMD Report 148, German National
Research Center for Information Technol-
ogy, 2001. electronically available via ftp:
//borneo.gmd.de/pub/indy/publications_
herbert/EchoStatesTechRep.pdf.

[3] J. Hertz, A. Krogh, and R. G. Palmer. Intro-
duction to the Theory of Neural Computation.
Addison-Wesley, 1991.

[4] S. H. Strogatz. Nonlinear Dynamics and Chaos:
With Applications in Physics, Biology, Chem-
istry, and Engineering (Studies in Nonlinearity).
Addison-Wesley, 1994.

[6] W. Maass and H. Markram. On the computa-
tional power of recurrent circuits of spiking neu-
rons. submitted for publication, 2001.

[6] V.N. Vapnik. Statistical Learning Theory. John
Wiley, New York, 1998.

[7] P. Auer, H. Burgsteiner, and W. Maass. The p-
delta learning rule for parallel perceptrons. sub-
mitted for publication, 2001.

[8] T. Natschlager and W. Maass. Spiking neu-
rons and the induction of finite state ma-
chines. Theoretical Computer Science: Special
Issue on Natural Computing, 2002. electroni-
cally available via http://www.igi.TUGraz.at/
tnatschl/psfiles/fst-learning-tcs.pdf.

[9] A. Gupta, Y. Wang, and H. Markram. Orga-
nizing principles for a diversity of GABAergic
interneurons and synapses in the neocortex. Sci-
ence, 287:273-278, 2000.



