
121

Chapter 9

Computer Models and Analysis Tools for Neural
Microcircuits

Thomas Natschläger1, Henry Markram2 and Wolfgang Maass1

1 Institute for Theoretical Computer Science, Technische Universität Graz, Austria
2 Brain Mind Institute, Ecole Polytechnique Federale de Lausanne, Switzerland
Correspondence to: tnatschl@igi.tu-graz.ac.at

Abstract: This chapter surveys web resources regarding computer models and analysis
tools for neural microcircuits. In particular it describes the features of a new
website (www.lsm.tugraz.at) that facilitates the creation of computer models
for cortical neural microcircuits of various sizes and levels of detail, as well as
tools for evaluating the computational power of these models in a Matlab-
environment.

Key words: neural microcircuits, spiking neurons, computer simulations, real-time
computing, learning algorithms, Matlab.

1. INTRODUCTION

A major problem in understanding brain-style computing is the
identification of the basic computational unit of the brain (Zador, 2000).
Neurons are obvious candidates. On the other hand there exist numerous
emergent properties of recurrent circuits of neurons and synapses which
cannot readily be explained on the basis of their components. This has
motivated an alternative proposal: that stereotypical neural microcircuits
which are repeated throughout the neocortex should be viewed as
computational units of the brain (Shepherd, 1988), (Douglas and
Martin, 1998). More detailed investigations of cortical neural microcircuits
have provided further evidence that these circuits exhibit intriguing
stereotypical features, but that these stereotypical circuit patterns are quite

122 Chapter 9

complex (Gupta et al., 2000), (Thomson et al., 2002), (Gupta et al., 2002).
This additional complexity arises from the fact that stereotypical cortical
microcircuits consist of a fairly large number of different types of neurons
and synapses, which are combined in quite regular circuit patterns. For
computational modeling this provides the additional challenge to explain
how computations are organized in such complex microcircuits, and how the
diversity of their components and the complexity of their connection patterns
might contribute – or even be essential – for the virtually unlimited
computational power of biological neural systems. Since at present it appears
to be hopeless to analyze the computational power of realistic models for
biological neural microcircuits with theoretical methods, computer
simulations provide the most promising tool. This chapter discusses publicly
available software and analysis tools that appear to be useful for such
investigations.

Obviously there exists no agreement regarding the meaning of abstract
concepts such as computation and computational power. In the following we
mean with a computation simply an algorithm or circuit that assigns outputs
to inputs. Evidence for the computational power of such circuit is provided
by the complexity and diversity of associations of outputs to inputs that can
be implemented on it. We will focus on the biological most common type of
computations where the inputs to a computation are not static batch inputs,
like in a computer, but rather continuous streams of information, such as for
example afferent spike trains from neurons in peripheral neural systems. In
addition we focus on the biologically most relevant case of real-time
computing, where the system cannot afford to wait until a computation has
terminated, but instead has to provide an output within a specific time
period. More precisely, we focus on the case where the neural circuit has to
respond to a stream of inputs with a stream of outputs, where the output at
time t represents the best response to the stream of inputs up to time t that
the circuit can provide at this time. In terms of concepts from computational
theory this shifts the emphasis towards online computations and anytime
algorithms (i.e., algorithms that output at any time the currently best guess at
an appropriate response), and away from offline computations that are more
common in computer applications (and which have frequently been used as
paradigms for computations in biological neural systems).

9.Computer models and analysis tools for neural microcircuits 123

2. WWW.LSM.TUGRAZ.AT

This website, which has been set up by the first author, contains a
collection of Matlab1 programs for constructing and simulating models for
neural microcircuits, as well as Matlab programs for generating input
streams and for analyzing the resulting circuit output for various benchmark
tasks. We have chosen Matlab since it allows easy implementation of the
analysis tools that we are using. Furthermore the powerful graphics offered
by Matlab makes it easy to visualize the results. One drawback of choosing
Matlab is that there is no readily available tool for the actual simulation of
neural circuits. We solved this problem by writing our own simulator for
leaky-integrate and fire neurons (in C) which can easily be accessed from
within Matlab (by means of a MEX interface). However, with a conceptually
very simple interface the user can use instead any other simulation software.

2.1 The Microcircuit Simulator

We provide a tool for simulating heterogeneous networks composed of
leaky-integrate-and-fire neurons, or alternatively of nonspiking (sigmoidal)
neurons. This simulator is written in C with an interface to Matlab (there is
no standalone version). It is intended to simulate networks containing a few
neurons, up to networks with a few thousand neurons and on the order of
100000 synapses.

Neuron models For the case of leaky-integrate-and-fire (LIF) neurons we
implemented the standard model where the membrane potential V of a
neuron is given by τm(dV/dt)=-(V-Vrest)+R(Isyn(t)+Iback), τm is the membrane
time constant, Vrest is the resting membrane potential, R is the input
resistance, Isyn(t) is the current supplied by the synapses, and Iback is a non-
specific background current. We have chosen the fixed values Vrest=0.0 and
R=1.0. Alternatively the user can offset the voltages and scale the currents
by the actual input resistance. If V exceeds the threshold voltage Vthresh it is
reset to Vreset and held there during the absolute refractory period (of length
τrefr).
With regard to nonspiking neurons (which may be useful for analyzing
population responses in larger circuits) we implemented a model of a
sigmoidal neuron with leaky integration. The dynamics of such a neuron is
given by τ(dx/dt)=-x+g(Isyn(t)+Iback) where x is the output (in the range (0,1))
of the unit (which can be interpreted as an average firing rate over time or
space), g is the logistic sigmoid function g(z)=1/(1+exp(-z)), and τ some time

1 Matlab is a registered trademark of The Mathworks Inc., see www.mathworks.com for more
information about Matlab.

124 Chapter 9

constant (see e.g. chapter 7 in (Hertz et al., 1991)).

Synapse models Two types of synapses are implemented: static and dynamic
synapses. While for static synapses the amplitude of each postsynaptic
current (PSC) is the same, the amplitude of an PSC in the case of a dynamic
synapse depends on the spike train that it has seen so far. For synapses
transmitting spikes the time course of a PSC is modeled by A⋅exp(-t/τsyn),
where τsyn is the synaptic time constant and A is the synaptic strength
(weight) which is constant for static synapses and given by the model
described in (Markram et al., 1998) for dynamic synapses. For synapses
transmitting analog values (such as the output of a sigmoidal neuron) static
synapses are simply defined by their strength A (weight), whereas for
dynamic synapses we implemented a continuous version of the dynamic
synapse model for spiking neurons (Tsodyks et al., 1998).

Network inputs There are two forms of inputs which can be supplied to the
simulated neural microcircuit: spike trains and analog currents, see the user
manual for details.

Synaptic plasticity The simulator also supports spike time dependent
plasticity, STDP, applying a similar model as in (Song et al., 2000). STDP
can be modeled most easily by making the assumption that each pre- and
postsynaptic spike pair contributes to synaptic modification independently
and in a similar manner. Depending on the time difference ∆t=tpre-tpost
between pre- and postsynaptic spike the absolute synaptic strength is
changed by an amount L(∆t). A typical shape for the function L(∆t) as found
for synapses in neocortex layer 5 (Markram et al., 1997) is shown in Fig. 1.
The current implementation allows for an arbitrary choice for the function
L(∆t), since various different shapes of it have been found for different
synaptic connections (Abbott and Nelson, 2000). Synaptic strengthening and
weakening are subject to constraints so that the synaptic strength does not go
below zero or above a certain maximum value.

∆t

∆L(t)

−50 ms

−50 ms

Figure 1: Spike time dependent plasticity (STDP) as found for synapses in neocortex layer 5
(Markram et al., 1997).

9.Computer models and analysis tools for neural microcircuits 125

2.2 Tools for Creating Microcircuit Models

When one tries to build a realistic model of a stereotypical cortical
microcircuit, one can rely on a number of clear rules that have been
established by anatomical and neurophysiological research (Braitenberg
et al, 1998), (Gupta et al, 2002), (Thomson et al, 2002). However many of
these rules are of a statistical nature, and there are also various aspects where
empirical data are still missing. In order to take this into account, the website
provides tools not just for building a computer model of one particular
neural microcircuit. It also allows the user to specify a probability
distribution over neural microcircuits, and to draw random samples
according to that distribution. For some questions the evaluation of their
average computational power may be more realistic than the analysis of one
particular circuit model (that necessarily also has several accidental
features). As of this writing there are tools available for constructing multi-
column circuits with a distribution of parameters that match those reported in
(Gupta et al., 2000).

Connectivity within a single column In a single column the neurons are
placed on a Nx × Ny × Nz 3-dimensional grid. A certain fraction fI of these
neurons are randomly chosen to be inhibitory neurons. The synapses
between these neurons are randomly created in the following way: the
probability of a synaptic connection from neuron j to neuron i (as well as
that of a synaptic connection from neuron i to neuron j) is defined by

)/),(exp(2λjiDC −⋅ , where λ is a parameter which controls both the average
number of connections and the average distance between neurons that are
connected. D(i,j) is the Euclidean distance between the neurons i and j
(which are located on nodes of the Nx × Ny × Nz grid). Depending on whether
i and j are excitatory (E) or inhibitory (I), the value of C can be set to
different values CEE, CEI, CIE or CII .

Synapse parameters A synapse can be chosen to be static or dynamic. In
either case the associated scaling parameter A (the absolute synaptic
strength) also depends on the type (E or I) of the pre- and postsynaptic
neuron. To be precise: the four parameters AEE, AEI, AIE or AII describe the
mean value of the absolute synaptic strength for a given type of connection
(EE, EI, IE, II). The actual value of Aij for a synaptic connection from neuron
j to neuron i of type T(ij) is chosen randomly from a gamma distribution
with mean AT(ij) and a standard deviation of AT(ij)⋅SHA. Dynamic synapses are
described by the additional parameters U (use), D (depression time constant)
and F (facilitation time constant) of the synapse model proposed in
(Markram et al., 1998), which in general also depend on the type of the
synapse. The actual values Uij, Dij and Fij for a synaptic connection from

126 Chapter 9

neuron j to neuron i of type T(ij) can be drawn from a Gaussian distribution
(with appropriately resampled values for outliers) with user-specified mean
values UT(ij), DT(ij), FT(ij) and standard deviations SHudf⋅UT(ij), SHudf⋅DT(ij),
SHudf⋅FT(ij).

Intercolumn connectivity One can specify separately for each pair of
columns the probability of connections between neurons in these two
columns and the distribution of the synaptic values for these connections in
an analogous manner.

2.3 Analyzing the Computational Power of Neural
Microcircuit Models

The conceptual framework of a Liquid State Machine (LSM)
(Maass et al., 2002) facilitates the analysis of the real-time computing
capability of neural microcircuit models. It does not require a task-dependent
construction of a neural circuit, and hence can be used to analyze
computations on quite arbitrary “found” or constructed neural microcircuit
models. It also does not require any a-priori decision regarding the “neural
code” by which information is represented within the circuit.

input u(�)

microcircuit

state x(t)

readout 1

f1(x(t))

readout n

fn(x(t))

CmC1

Figure 2. A The Liquid State Machine (LSM). The recurrent microcircuit (liquid) transforms
the input into states x(t), which are mapped by the memory-less readout functions f1, ..., fn to
the outputs f1(x(t)), ..., fn(x(t)). B A simple procedure for learning a given task defined by its
target outputs yu(t) (yu(t) denotes the target output at time t if u(⋅) is given as input).

1.) Define the neural microcircuit to be
analyzed

2.) Record states x(t) of the
microcircuit at various time points
in response to numerous different
(training) inputs u(⋅)

3.) Apply a supervised learning algo-
rithm to a set of training examples
of the form 〈x(t),yu(t)〉 to train a
readout function f such that the
actual outputs f(x(t)) are as close as
possible to the target outputs yu(t).

A B

9.Computer models and analysis tools for neural microcircuits 127

The basic idea is that a neural (recurrent) microcircuit may serve as an
unbiased analog (fading) memory (informally referred to as “liquid”) about
current and preceding inputs to the circuit.

We refer to the vector of contributions of all the neurons in the
microcircuit to the membrane potential at time t of a generic readout neuron
as the liquid state2 x(t) (see Fig. 2A). Note that this is all the information
about the state of a microcircuit a readout neuron get access. In contrast to
the finite state of a finite state machine the liquid state of an LSM need not
be engineered for a particular task. It is assumed to vary continuously over
time and to be sufficient sensitive and high-dimensional that it contains all
information that may be needed for specific tasks.

The liquid state x(t) of a neural microcircuit can be transformed at any
time t by a readout map f into some target output f(x(t)) (which is in general
given with a specific representation or neural code). We will argue that only
the synapses of these readout neurons have to be adapted for a particular
computational task. This requires that any two different input time series
u(s), s ≤ t and v(s), s ≤ t which should produce different outputs at some
subsequent time t put the recurrent circuit into two (significantly) different
states xu(t) and xv(t) at time t. In other words: the current state x(t) of the
microcircuit at time t has to hold all information about preceding inputs. If
the liquid has this property it possible to train a memory-less readout to
produce the desired output at time t. If one lets t vary, one can use the same
principles to produce as output a desired time series or function of time t
with the same readout unit (provided also the states x(t) and x(t´) for
different times t and t´ are different for saliently different input histories).

Fig. 2B outlines the basic procedure for training a readout to perform a
given task based on the ideas sketched above. One advantage of this
approach is that it is not necessary to take any temporal aspects into account
for the learning task, since all temporal processing is done implicitly in the
recurrent circuit. Furthermore no a-priori decision is required regarding the
neural code by which information about preceding inputs is encoded in the
current liquid state of the circuit. Note also that one can easily implement
several computations in parallel using the same recurrent circuit. One just
has to train for each target output a separate readout neuron, which may all
use the same recurrent circuit.

According to the theoretical analysis of this computational model, see
(Maass et al., 2002), there are no a-priori limitations for the power of this
model for real-time computing with fading memory. Of course one needs a
larger circuit to implement computations that require more memory capacity
or more noise-robust pattern discrimination. The theoretically predicted

2 This terminology is motivated by the fact that in contrast to the finite state of a finite state
machine this circuit output assumes continuous values and varies continuously over time.

128 Chapter 9

universality of this computational model for neural microcircuits can not be
tested by evaluating their performance for a single computational task.
Instead, each microcircuit model should be tested on a large variety of
computational benchmark tasks. Hence it is desirable that many users test
the circuit models of the LSM-webpage on their favorite computational
problem. Furthermore it seems advantageous to have a set of benchmark
tests on which different models can be compared on a qualitative basis.

2.3.1 Benchmark Tasks

The tests for analyzing and comparing models of microcircuits that are
currently available on the website all have the basic structure outlined in
Fig. 2B. Hence to specify a test one just has to define a distribution of inputs
and target outputs for these inputs. Then one collects a sufficiently large set
of Ntrain training examples by recording the liquid states of the circuit for
Ntrain inputs drawn from this distribution together with the associated target
outputs. Subsequently a learning algorithm (see section 2.3.2) is applied to
this set of training examples, and the performance of the trained readout
module is assessed by measuring the error between the actual output and the
target function on a distinct set of Ntest test inputs. In the machine learning
community it is common practice that the test inputs are generated by the
same distribution as the training inputs.3 If the error on this test set is small
one may conclude that the readout is able to generalize to unseen inputs (and
has not simply memorized the training examples, which is called overfitting
in the machine learning community. In the following we describe some
benchmark tasks which have already been used, and for which code is
provided.

Classification of spike trains: The task is to output the class to which a
spike train belongs. This task is motivated by the recent work of Hopfield
and Brody (Hopfield and Brody, 2001), where they considered the task to
classify spatio-temporal pattern of events in time (like spikes). In their case
these events in time came from a simple procedure which converts single
spoken words into spatio-temporal spike patterns (with at most one spike per
channel). Our website provides code for the following generalization of the
task: m arrays of d (e.g. m=10 and d=40 in (Hopfield and Brody, 2001))
Poisson spike trains of frequency f and length Tmax (e.g. f=20Hz,
Tmax=0.5sec) are generated, and fixed as (spatio-temporal) templates 1 to m.
For i=1 to m one generates jittered versions of template i by varying each
spike in template i by a random drawn amount given by a Gaussian
distribution with zero mean and a given STD; this STD is called jitter. The

3 However the software lets the user specify also a distinct distribution.

9.Computer models and analysis tools for neural microcircuits 129

task is to output the number of the template from which the spike train was
actually generated.

Classification of segments of jittered spike trains: This is a more
complex task which can be used to evaluate the fading memory capability of
a specific microcircuit model. The goal is here to output the class to which a
specific time segment of the input spike trains belongs. The input distribution
is characterized as follows: All inputs are of length Tmax (e.g. 1.0sec) and
consist of n (e.g. 4) segments of length Tmax/n each. For each segment m (e.g.
m=2) templates are generated randomly (d Poisson spike trains with a
frequency f as described in the preceding paragraph). The actual input spike
trains are generated by choosing for each segment one of the m associated
templates, and then generating a jittered version of it. One has in general n
readout modules, whose task is to output for each of the n segments the
number of the template from which the corresponding segment of the input
was generated.

Fig. 3 shows the results for a microcircuit with λ=2 when tested on this
task (d=1, n=4, m=2, f=20Hz, Tmax=1sec). Two cases were investigated: a)
with static synapses in the microcircuit and b) with dynamic synapses in the
microcircuit. Note that for the case of static synapses the liquid state of the
microcircuit contains substantially less information about preceding input
segments than with dynamic synapses.

1 2 3 4
0.5

0.6

0.7

0.8

0.9

1

av
g.

 c
or

re
ct

. o
n

te
st

 s
et

segment number

dynamic synapses
static synapses

Figure 3: A result for the task "Classification of segments of jittered spike trains". 4 readout
modules f1 to f4, each consisting of a single perceptron, were trained for this task. The readout
module fi was trained to output 1 at time t=1sec if the ith segment of the previously presented
input spike train had been constructed from the corresponding template 1, and to output 0 at
time t=1sec otherwise.

The avg. correctness (percentage of correct classification on an
independent set of 500 inputs not used for training) is calculated as the
average over 50 trials. In each trial a randomly connected circuit was
constructed (1 column, λ=2) and the readout modules f1 to f4 were trained for
perturbed versions (jitter=4ms) of randomly chosen Poisson spike trains

130 Chapter 9

(f=20Hz) as templates. Such averaging is necessary to get statistically
significant results. On the other hand a lot more CPU time is needed to get
the simulations done. Since such trials are all independent they can easily be
done in parallel. The benchmark tests provided at www.lsm.tugraz.at support
this type of parallelism; see subsection 2.3.3.

Retrieval of delayed sum of rates: This is a more challenging memory
task: at time t output the sum of rates of the input spike trains, averaged over
a past time window. The input to the liquid consists of d Poisson spike
trains. The rate of theses spike trains is modulated via a randomly chosen
function. More precisely each input spike train has an instantaneous rate of
fmax⋅r(t) where the random drawn function r(t) is restricted to the interval
(0,1). The function r(t) is a sum of several frequency components fi with
independently chosen amplitudes and phase shifts; actually we choose the
amplitude ai of the sin part and the amplitude bi of the cosine part for the
modulation frequency fi from a Gaussian distribution with zero mean and a
variance of σ=1. In summary, r(t) is of the form r(t) = Au(t) + B with u(t) =
Σi aisin(2 π fi t) + bi cos(2 π fi t) where A and B are some constants chosen
such that r(t) is in the range (0,1). The task is then to output at time t the sum
of rates (normalized to the interval (0,1)) averaged over the interval (t-D-
W,t-D) where W is the length of the interval and the "delay" D specifies how
far in the past this interval lies. Fig. 4 shows results for two different
microcircuits and for different values of the "delay" D. Note the significantly
worse performance of the microcircuit with very sparse connectivity (λ=0.2).
This shows that recurrent connections are necessary for the microcircuit to
(temporally) integrate the stimulus.

0 0.05 0.1 0.15 0.2
0

0.5

1

av
g.

 c
or

re
la

tio
n

delay [sec]

λ=2
λ=0.2

Figure 4: Results for the "Delayed Sum of Rates" task. 5 readout modules f0, f50, f100, f150, and
f200 were trained (via linear regression) to map the liquid state of the circuit onto the scaled
sum of rates for the five corresponding different values of D: 0ms, 50ms, 100ms, 150ms, and
200ms. The performance is measured as the average correlation between the actual output and
the target output on an independent test set.

9.Computer models and analysis tools for neural microcircuits 131

2.3.2 Available Learning Algorithms

All the previously described benchmark tasks employ some supervised
learning algorithm in order to train the readout to map the liquid states of the
microcircuit to the desired output. Note that in a biological context the target
outputs may be provided by the environment (for example in the case of
prediction tasks, or for function approximation in reinforcement learning), so
that the learning algorithm is supervised only from the point of view of the
local circuit, but unsupervised from the point of view of the system. In
principle any supervised learning algorithm can be used for training readout
modules. In fact it is rather straightforward to add a new algorithm to the set
of readily available ones. In this section we will shortly describe the learning
algorithms whose code is currently available on the website. The focus lies
on learning algorithms that are commonly discussed in the context of neural
computation. We do not go into the details of a particular algorithm, but just
want to highlight some pros and cons. Excellent sources regarding details of
these learning algorithms (except for the p-delta rule) are (Duda et al., 2001)
and (Hertz et al., 1991).

The delta rule is one of the oldest and most studied neural learning
algorithms. It is designed to train a single perceptron (or threshold gate) for a
certain task. Due to the binary output of a perceptron it is limited to
classification tasks. The appealing features of this algorithm are its
simplicity and its online character which means that learning can be done on
an example by example basis and it is not neccessary to have the whole
batch of training examples available at once. The disadvantage of the delta-
rule is that it does not converge to a stable solution if there is no perfect
solution of the task at hand. (i.e. if the data is not linearly seperable).

Support vector machines (SVM) A SVM4 is a more advanced algorithm for
finding the parameters (weights) of a single perceptron applied to a virtual
nonlinear projection of the data into a very high dimensional space (see
(Vapnik, 1998) for details. The main idea is to choose among all the possible
weight settings one which is least likely to overfit. An advantage of a SVM
is that it is guaranteed to find the optimal weight setting (by means of a
quadratic programming approach). The price to pay for this is the large
computation time if the dimension and the size of the training data are
substantial .

The p-delta learning rule The p-delta rule is a generalization of the delta

4 In the case of a nonlinear SVM the input is first nonlinearly transformed in a high-
dimensional feature space where then the optimal weight vector is determined.

132 Chapter 9

rule that trains a population of perceptrons to adopt a given population
response (in terms of the number of perceptrons that are above threshold). In
contrast to other distributed neural learning algorithm it requires very little
communication between the neural units (for details see (Auer et al., 2002)).
The resulting readout function can also be implemented as a pool of
unconnected spiking neurons. Obviously n perceptrons can output not only a
binary value but a number between 0 and 1 (in discrete steps of size 1/n). In
fact, pools of perceptrons have the universal approximation property, i.e.,
they can approximate any given continuous function on any compact domain
with any desired degree of precision. The p-delta learning algorithm is in
some respect similar to support vector machines, since it explicitly tries to
avoid overfitting. One possible drawback is that the user has to get a feeling
for the numerous parameters which one has to set. However, by using the
default parameters one usually gets quite good results.

Linear regression (least mean square) Linear regression is probably one of
the simplest "learning" algorithms. It is the algorithm which one should try
first since it is fast, there are no parameters to tune, one knows exactly what
is computed and if one has enough data overfitting is unlikely. Furthermore
it can be applied to binary (the output is simply passed through a threshold
operation) as well to analog target functions

The back-propagation algorithm The back-propagation algorithm is a very
popular algorithm for training multi-layer feed-forward artificial neural
networks. Like the p-delta rule it has the advantage that it can in principle
approximate very complicated target functions if one chooses the right
network architecture (which is not a trivial problem). However, one has to be
careful not to use too large networks in order to avoid overfitting. Regarding
more details about back-propagation we refer the reader to
(Hertz et al., 1991) and (Duda et al., 2001).

Which learning algorithm should I use? The answer strongly depends on
the type of microcircuit that one wants to evaluate, the task one wants to
implement, and last but not least on the type of results one is looking for. If
one is able to get good performance with a very simple readout such as a
simple perceptron (e.g. trained with the delta rule or linear regression) one
can infer that the microcircuit not only carries out all temporal integration
that is needed, but also projects its information about preceding inputs into a
sufficiently high dimensional space to facilitate subsequent linear pattern
recognition (in other words: in this case the microcircuit implements in
addition a sufficiently nonlinear and high dimensional kernel, which plays a
similar role as the kernel of a SVM).

9.Computer models and analysis tools for neural microcircuits 133

2.3.3 Support for Parallel Processing

The software supports parallel execution of independent parts of the
benchmark tasks. Such independent parts include simulation of a given
microcircuit with different stimuli and training of several readout function
for the same set of inputs (like in Fig. 3 and 4). Note that a single
microcircuit will always be simulated at one processor. The following setup
is required to be able to utilize the parallel processing feature: a cluster of
Unix machines (we use Linux, Redhat 7.2 and SuSE 8.0) which share a
common file system (via NFS) and where the software packages Matlab, the
Parallel Virtual Machine (PVM) Library (http://www.csm.ornl.gov/pvm/),
and the Parallel Matlab Toolbox (Svahn, 2001)5 are installed.

2.4 Contributing to www.lsm.tugraz.at

The microcircuit models, benchmark tasks and learning algorithms
described so far should just serve as a starting point for this website. We
would like to encourage everybody to contribute his/her models, simulation
tools, data, algorithms and last but not least links to related webpages to
www.lsm.tugraz.at.

As of this writing there is no automated way for doing this. But any
material which is potentially related/interesting can be sent by e-mail
(lsm@igi.tu-graz.ac) to the maintainers of the website.

2.5 Comparison to Other Tools for Analyzing Neural
Microcircuits

There are many other tools available for the simulation and analysis of
the type of networks which are currently supported via the software available
at www.lsm.tugraz.at. A quite comprehensive list can be found at
www.hirnforschung.net/cneuro/cneuro_software.htm. The goal of most of
these tools is to provide some kind of general purpose simulation and
analysis environment. In principle it would have been possible to implement
all code provided at www.lsm.tugraz.at for example within GENESIS
(www.genesis-sim.org) or NEURON (www.neuron.yale.edu), to name two
prominent representatives of this class of simulators. The advantages would
have been that these systems are designed to simulate biologically realistic
neurons and one does not have to worry about the particularities like
numerical integration. However, we found that most of these systems have
disadvantages in comparison with the standard tool Matlab when one

5 Note that each Matlab process which is spawned uses one full Matlab licence.

134 Chapter 9

implements the analysis tools (for example the learning algorithms) that are
needed to evaluate the computational power of microcircuit models. Another
(not major) issue was simulation speed: general purpose simulators are
usually slower than specialized tools (due to the overhead needed for
generality).

The software describe in this chapter is limited to moderate sized models
and does not scale to really large models. One project aiming for the
simulation of large scale models is the NeoCortexSimulator developed at the
Goodman Brain Computation Lab (see http://brain.cs.unr.edu). The goal of
this project is to emulate a multi-columnar brain of up to 1 million
compartmental neurons by the year 2003. To achieve this performance the
simulation software makes use of the supercomputing Beowulf network of
the University of Nevada, Reno.

3. OUTLOOK

As soon as more experimental data regarding the connectivity and
anatomy of neural microcircuits will become publicly available, we plan to
add software to the website for creating neural microcircuits that reflect
these new data. However for building such more complex microcircuit
models it may turn out that one needs a more abstract language for
describing the neural microcircuit. One project which tries to establish such
a description language for neural systems (which is independent of the
software which is actually used to simulate the circuit) is NeuroML, see
http://www.neuroml.org.

In the near future we will provide on our website additional analysis tools
that are based on concepts from information theory. These will complement
the application of learning algorithms by a direct analysis of the mutual
information between the liquid state (or other internal variables) of a
microcircuit with the preceding circuit input. The estimation of this mutual
information is not a trivial problem, since one has to deal with the problem
of undersampling (see chapter 10: A practical guide to information analysis
of spike train by S. Panzeri, R.S. Petersen and S.R. Schultz). However we
think that this is a valuable way to analyze functional properties of neural
microcircuits.

We also plan to make publicly available new software which allows the
application of microcircuit models to simple sensory processing tasks, such
as the ones discussed in (Legenstein et al., 2002). There neural microcircuit
models were trained to predict movements of different objects, that move
within an unlimited number of combinations of speed, angle, and offset over
a simulated visual field. This approach provides interfaces for using

9.Computer models and analysis tools for neural microcircuits 135

simulated models of biological neural microcircuits in actually sensory
processing tasks, for example for controlling a mobile robot.

The software currently available is based on the extremely simple LSM
architecture shown in Fig. 2A. For a biologically more realistic scenario we
will also allow for feedback from the readout back into the microcircuit. In
fact, neurons within the liquid circuit may simultaneously serve as readout
neurons, thereby blurring the distinction between a microcircuit and its
readout. To explore this more complex scenario we are currently developing
the necessary software tools. Another simplification made so far is that we
are only looking at one microcircuit – more precisely one microcircuit and
its associated readouts - at a time. In the spirit of the discussion about
microcircuits as potential computational units of the brains it is obvious that
one also wants to look at hierarchies or even recurrent networks of such
units. Software for such higher level networks also needs to be developed.

Last but not least some kind of graphical user interface (GUI) is needed,
which should make the available tools more easily accessible. We are
looking forward to feedback and software contributions from the users.

REFERENCES

Abbott, L. F., and Nelson, S. B. (2000) Synaptic plasticity: taming the beast. Nature
Neurosci. 3, 1178-1183.

Auer, P., Burgsteiner, H., and Maass, W. (2002) Reducing communication for distributed
learning in neural networks. Proc. ICANN'2002. Online available as # 127 on
http://www.igi.tugraz.at/maass/publications.html.

Braitenberg, V., and Schuez, A. (1998) Cortex: Statistics and Geometry of Neuronal
Connectivity, 2nd ed., Springer Verlag, Berlin.

Douglas, R., and Martin, K. (1998) Neocortex. In: The Synaptic Organization of the Brain.
G. M. Shepherd, Ed., Oxford University Press, 459-509.

Duda, R. O., Hart, P. E., and Stork, D. G. (2001) Pattern Classification, 2nd ed., John Wiley
& Sons, New York.

Gupta, A., Wang, Y., and Markram, H. (2000) Organizing principles for a diversity of
GABAergic interneurons and synapses in the neocortex. Science 287, 273-278.

Gupta, A., Silberber, G., Toledo-Rodriguez, M., Wu, C. Z., Wang, Y., and Markram, H.
(2002, in press) Organizing principles of neocortical microcircuits. Cellular and
Molecular Life Sciences.

Hertz, J., Krogh, A., and Palmer, R. G. (1991) Introduction to the Theory of Neural
Computation. Addison-Wesley, Redwood City, Ca.

Hopfield, J. J., and Brody, C. D. (2001) What is a moment? Transient synchrony as a
collective mechanism for spatio-temporal integration. Proc. Natl. Acad. Sci., USA, 89(3),
1282.

136 Chapter 9

Legenstein, R. A., Maass, W., and Markram, H. (2002) Input prediction and autonomous
movement analysis in recurrent circuits of spiking neurons, submitted for publication.
Online available as # 140 on http://www.igi.tugraz.at/maass/publications.html.

Maass, W., Natschläger, T., and Markram, H. (2002, in press) Real-time computing without
stable states: A new framework for neural computation based on perturbations. Neural
Computation. Online available as # 130 on
http://www.igi.tugraz.at/maass/publications.html.

Markram, H., Lubke, J., Frotscher, M., and Sakmann, B. (1997) Regulation of synaptic
efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 213-215.

Markram, H., Wang, Y., and Tsodyks, M. (1998) Differential signaling via the same axon
of neocortical pyramidal neurons. Proc. Natl. Acad. Sci., 95, 5323-5328.

Markram, H., Ofer, M., Natschläger, T., Maass, W. (2002, in press) Temporal integration in
neocortical microcircuits. Cerebral Cortex.

Shepherd, G. M. (1988) A basic circuit for cortical organization. In: Perspectives in
Memory Research, M. Gazzaniga, Ed., MIT-Press, 93-134.

Song, S., Miller, K., and Abbott, L. F. (2000) Competitive Hebbian learning through spike-
timing-dependent synaptic plasticity. Nature Neurosci. 3, 919-926.

Svahn, E. (2001) Parallel Matlab Toolbox: User Documentation. Masters Thesis, Chalmers
University of Technology, Sweden. To get a copy of the toolbox contact E. Svahn (email:
ersva@igb.polymtl.ca, d96svahn@dtek.chalmers.se) or get it via ftp://ftp-at.e-
technik.uni-rostock.de/pub/pm/.

Thomson, A., West, D. C., Wang, Y., and Bannister, A. P. (2002, in press) Synaptic
connections and small circuits involving excitatory and inhibitory neurons in layers 2 to 5
of adult rat and cat neocortex: triple intracellular recordings and biocytin-labelling in
vitro. Cerebral Cortex.

Tsodyks, M., Pawelzik, K., and Markram, H. (1998) Neural networks with dynamic
synapses. Neural Computation 10, 821-835.

Vapnik, V. N. (1998) Statistical Learning Theory. John Wiley, New York.
Zador, A. (2000) The basic unit of computation. Nature Neurosci. 3, 1167.

