
CSIM : A Neural C ircuit SIMulator
Version 1.1

User Manual

c©2002 The IGI LSM Group
www.lsm.tugraz.at

July 10, 2006

This document is part of CSIM Release 1.1

Copyright 2002 The IGI LSM group

CSIM is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2, or (at your option) any later version.

CSIM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.

To get a copy of the GNU General Public License point your browser to http://www.gnu.org/copyleft/gpl.html.

The IGI LSM group
Institute for Theoretical Computer Science
Graz University of Technology
Inffeldgasse 16/b, A-8010 Graz, AUSTRIA
lsm@igi.tu-graz.ac.at, www.lsm.tugraz.at

www.lsm.tugraz.at
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html
lsm@igi.tu-graz.ac.at
www.lsm.tugraz.at

Contents

1 Preliminaries 5

1.1 What is CSIM ? . 5

1.2 About this Manual . 5

1.3 Features of the current version . 6

1.4 Getting and Installing CSIM . 6

1.5 Compiling CSIM from the sources . 7

2 A short Tutorial 9

2.1 Creating Objects . 9

2.2 Object Handles . 9

2.3 Setting Fields or Parameters . 9

2.4 Making connections . 10

2.5 Recording . 11

2.6 Setting up the input . 11

2.7 Running the simulation . 11

2.8 Plotting the recorded traces . 12

3 Input and Output 13

3.1 Input Signals . 13

3.2 Output . 14

3.2.1 Getting results of the last simulation 14

3.2.2 Getting the results of a multi-stimulus simulation 15

4 Additional Topics 15

4.1 How the network is simulated . 15

4.2 Global fields . 16

4.3 Event driven simulation . 16

5 Adding your own C++ model classes to CSIM 16

5.1 Recipe . 17

5.2 Details . 17

5.3 Hints for adding user defined models . 17

5.4 Setting and getting field values of objects . 18

5.5 Implementaion . 18

5.5.1 Registering classes and fields . 18

2

5.5.2 reggen . 19

6 CSIM command reference 21

6.1 Setting up a network simulation . 21

6.1.1 create . 21

6.1.2 set . 21

6.1.3 connect . 22

6.2 Running the network simulation . 22

6.2.1 reset . 22

6.2.2 simulate . 22

6.3 Saving, loading and deleting networks . 23

6.3.1 export . 23

6.3.2 import . 23

6.3.3 destroy . 23

6.4 Displaying/Getting information . 23

6.4.1 get . 23

6.4.2 list . 24

6.4.3 version . 25

7 CSIM model classe reference 25

7.1 AChannel Hoffman97 . 25

7.2 AChannel Korngreen02 . 25

7.3 ActiveCaChannel . 26

7.4 ActiveChannel . 26

7.5 AHP Channel . 26

7.6 AlphaSpikeFilter . 27

7.7 AnalogFeedbackNeuron . 27

7.8 AnalogInputNeuron . 27

7.9 AnalogTeacher . 28

7.10 ArmModel . 28

7.11 bNACNeuron . 29

7.12 bNACOUNeuron . 29

7.13 CaChannel Yamada98 . 30

7.14 cACNeuron . 31

7.15 cACOUNeuron . 31

7.16 CaGate Yamada98 . 32

3

7.17 CALChannel Destexhe98 . 33

7.18 CbNeuronSt . 33

7.19 CbNeuron . 35

7.20 CbStOuNeuron . 37

7.21 CountSpikeFilter . 39

7.22 DiscretizationPreprocessor . 39

7.23 dNACNeuron . 39

7.24 dNACOUNeuron . 40

7.25 DynamicSpikingCbSynapse . 41

7.26 DynamicSpikingSynapse . 42

7.27 DynamicStdpSynapse . 42

7.28 ExpSpikeFilter . 43

7.29 ExtInputNeuron . 44

7.30 ExtOutLifNeuron . 44

7.31 ExtOutLinearNeuron . 45

7.32 ExtOutSigmoidalNeuron . 45

7.33 GaussianAnalogFilter . 45

7.34 GVD cT Gate . 46

7.35 GVD Gate . 46

7.36 HChannel Stuart98 . 46

7.37 HH K Channel . 47

7.38 HH Na Channel . 47

7.39 HHNeuron . 47

7.40 HVACAChannel Brown93 . 48

7.41 IfbNeuron . 49

7.42 Izhi Neuron . 50

7.43 KCAChannel Mainen96 . 51

7.44 KChannel Korngreen02 . 51

7.45 LifBurstNeuron . 52

7.46 LifNeuron . 53

7.47 linear classification . 53

7.48 LinearNeuron . 54

7.49 LinearPreprocessor . 54

7.50 linear regression . 54

7.51 MChannel Mainen96 . 54

4

7.52 MChannel Wang98 . 55

7.53 Mean Std Preprocessor . 55

7.54 MexRecorder . 55

7.55 NPChannel McCormick02 . 56

7.56 PCAPreprocessor . 56

7.57 Readout . 56

7.58 Recorder . 57

7.59 SICChannel Maciokas02 . 58

7.60 SigmoidalNeuron . 58

7.61 SpikingInputNeuron . 58

7.62 SpikingTeacher . 59

7.63 StaticAnalogCbSynapse . 59

7.64 StaticAnalogSynapse . 59

7.65 StaticSpikingCbSynapse . 59

7.66 StaticSpikingSynapse . 60

7.67 StaticStdpSynapse . 60

7.68 Traubs HH K Channel . 61

7.69 Traubs HH Na Channel . 61

7.70 TraubsHHNeuron . 61

7.71 TriangularAnalogFilter . 63

7.72 UserAnalogFilter . 63

1 Preliminaries

1.1 What is CSIM ?

CSIM is a tool for simulating heterogeneous networks composed of different model neurons
and synapses. This simulator is written in C++ with an MEX interface to Matlab. It is
intended to simulate networks containing up to 10.000 neurons and up to the order of a few
millions of synapses (the actual size depends of course on the amount of RAM available on
your machine).

1.2 About this Manual

This manual is intended to describe how to use CSIM from the (Matlab) users point of view. It
does not try to explain (or give an introduction to) the type of models which can be simulated
with CSIM. Regarding neural modeling we refer the reader to [Dayan and Abbott, 2001] and
[Gerstner and Kistler, 2002]. Furthermore Matlab programming knowledge is assumed.

This manual is also available in HTML format.

5

http://www.mathworks.com
file:usermanual.html

1.3 Features of the current version

Different levels of modeling Different neuron models: leaky-integrate-and-fire neurons,
compartmental based neurons, sigmoidal neurons. Different synapse models: static
synapses and a certain model of dynamic synapses are available for spiking as well as
for sigmoidal neurons. Spike time dependent synaptic plasticity is also implemented.

Easy to use Matlab interface Since CSIM is incorporated into Matlab it is not necessary
to learn any other script laguage to set up the simulation. This is all done with Matlab
scripts. Furthermore the results of a simulation are directly returned as Matlab arrays
and hence any plotting and analysis tools available in Matlab can easily be applied.

Object oriented design We adopted an object oriented design for CSIM which is similar
to the approaches taken in GENESIS and NEURON. That is there are objects (e.g. a
LifNeuron object implements the standard leaky-integrate-and-fire model) which are
interconnected by means of some signal channels. The creation of objects, the connec-
tion of objects and the setting of parameters of the objects is controlled at the level of
Matlab scipts whereas the actual simulation is done in the fast C++ core.

Fast C++ core Since CSIM is implemented in C++ and is not as general as GENESIS or
NEURON simulations are performed quite fast. We also implemented some ideas from
event driven simulators like SpikeNet which result on an average speedup of 3 (assum-
ing an average firing rate of the neurons of 20 Hz and short synaptic time constants)
compared to a standard fixed time step simulation scheme.

Runs on Windows and Unix (Linux) CSIM is developed on Linux but also runs under
Windows XP (we have no more experience with Windows 98 yet, but it should also run
there) and should in principle run on any platform for which Matlab is available.

External Interface There is an external interface which allows CSIM to communicate with
external programs. In this way one can for example control the miniature robot Khepera
with CSIM . This feature is not available in the Windows version.

1.4 Getting and Installing CSIM

CSIM is distributed under the GNU General Public License and can be downloaded from
http://www.igi.tugraz.at/csim.

To install CSIM perform the following steps:

1. Donwload CSIM from www.igi.tugraz.at/csim

2. Unzip the file csim-VER.zip where VER stands for the version you have downloaded.

This will create a subdirectory lsm and lsm/csim

3. Start Matlab and change into the directory lsm

4. Run the Matlab script install.m.

5. Add the path lsm to the Matlab search path; e. g.

6

http://www.bbb.caltech.edu/GENESIS/genesis.html
http://www.neuron.yale.edu
http://www.cnl.salk.edu/~arno/spikenet/
http://www.k-team.com/robots/khepera/index.html
http://www.gnu.org/copyleft/gpl.html
http://www.igi.tugraz.at/csim
www.igi.tugraz.at/csim

• addpath(’/home/jack/lsm’)} or

• addpath(’C:\Work\Neuroscience\lsm’).

6. Change into the directory lsm/csim/demos and play around with them.

7. Have fun using CSIM !

1.5 Compiling CSIM from the sources

The instruction in this section are relevant in two cases

a) You do not have Linux (x86 architecture) or Windows as an operating system.1

b) You are planning to add your own models written in C++ to CSIM; see section 5 for
more information on this topic.

Currently we support compilation using (GNU) make for Linux/Unix (which most likly
also works for Mac OS X) and nmake (Microsoft Visual C++) for Windows (tested
only with Windows XP). The corresponding Makefiles are lsm/csim/src/Makefile and
lsm\csim\src\Makefile.win.

Step by step instructions

1. To compile CSIM from the sources you must first setup Matlab’s mex utility properly.
This can be achieved by issuing the command mex -setup at the Matlab prompt. For
more information on compiling MEX-files see the MEX-files Guide.

2. Optional steps: If you are planning to add your own models written in C++ to CSIM and
are not using Linux or Windows you have to build the reggen tool which comes with CSIM
(lsm/develop/reggen) for your platform.2

(a) Go to lsm/develop/reggen

(b) Run

• configure; make; for Linux/Unix(/Mac OS)
• make.bat msvc for Windows XP with MS Visual C++

(c) If this fails read lsm/develop/reggen/INSTALL and try to fix the build. In this case you
will notice that reggen is a modified version of the well known tool doxygen.

3. Edit the corresponding Makefile to meet your system configuration.

4. Goto csim/src and run

• make for Linux/Unix(/Mac OS)

• nmake -f Makefile.win for Windows (XP)
1The compiled MEX-files (csim.mexglx and csim.dll) which already come with CSIM should run on any

Linux or Windows operationg system respectively.
2For Linux and Windows the precompiled reggen tool is located in lsm/develop/reggen/bin.

7

http://www.mathworks.com/support/tech-notes/1600/1605.html

We do not know whether this instructions work on systems other than Windows XP with
MS Visual C++ and Linux with gcc (3.4 or higher). The External Interfaces/API section of
the Mathworks web site and the Tech-Note 1601 contain valuable information about compiler
requirements for compiling C++ MEX files.

8

http://www.mathworks.com/access/helpdesk/help/techdoc/matlab_external/matlab_external.shtml
http://www.mathworks.com/support/tech-notes/1600/1601.shtml

2 A short Tutorial

In this section we will introduce CSIM by means of a simple example. We will use CSIM to
simulate a model where a leaky-integrate-and-fire (Sec. 7.46) neuron (LIF neuron) is driven
by a Poisson spike train which is transmitted by a dynamic synapse (Sec. 7.26).

input spike train LIF neuron

dynamic synapse

output spike train

2.1 Creating Objects

Each element/entity of the simple model we will implement, will be simulated by a correspond-
ing object in CSIM . The following table shows the correspondence between the elements of
the model and the class of the object used to simulate the element

element of model class of CSIM object
input spike train SpikingInputNeuron
dynamic synapse DynamicSpikingSynapse
LIF neuron LifNeuron

Hence, for the simulation to run one must create objects (Sec. 6.1.1) of the given class:

>> i=csim(’create’,’SpikingInputNeuron’);
>> s=csim(’create’,’DynamicSpikingSynapse’);
>> n=csim(’create’,’LifNeuron’);

2.2 Object Handles

The values i, s, and n returned by these create commands (Sec. 6.1.1) are the indices or
handles to the created objects. The handles are the only means to further access or modify
existing objects.

2.3 Setting Fields or Parameters

Each of the created objects has several fields which usually correspond to a parameter of the
model which is implemented by the class of the object. To display for example all fields of
the LifNeuron (Sec. 7.46) object we can use the command

>> csim(’get’,n);

This will yield the following output

9

0 : LifNeuron
Cm = 3e-08 (F)
Rm = 1e+06 (Ohm)

Vresting = -0.06 (V)
Vreset = -0.06 (V)
Vinit = -0.06 (V)

Trefract = 0.003 (sec)
Inoise = 0 (A)

Iinject = 0 (A)
Vthresh = -0.045 (V)

Vm : 0 (V)
type = 0

nSpikes : 0
nIncoming : 0
nOutgoing : 0

Some of the fields are parameters of the model (Cm, Rm, ...) which can be modified (denoted
by the ’=’) others are internal state variables (Vm in this case) which can not be changed
(denoted by the ’:’) and yet other provide auxiliary information (nSpikes, nIncoming, ...).
See the Class Reference (Sec. 7) for details about fields of a particular object.

Suppose we want to change the absolut refractory period of the LIF neuron n to be of length
2 ms and add a noisy current of 50 nA. This can be done with the command

>> csim(’set’,n,’Trefract’,0.002,’Inoise’,50e-9);

For the dynamic synapse s we choose parameters such that it will show a depressing behaviour:

>> csim(’set’,s,’W’,10,’U’,0.1,’D’,1,’F’,0.05);
>> csim(’set’,s,’u0’,0.1,’r0’,1);

2.4 Making connections

So far we have generated three independent objects and set their fields to the desired values.
Now we have to connect the objects to implement our simple model. We have to connect the
input i to the synapse s and the synapse to the neuron n:

>> csim(’connect’,n,s); % synapse to neuron
>> csim(’connect’,s,i); % input to synapse

Note the the connect command (Sec. 6.1.3) uses the convention that the signal destination is
the first argument. Alternatively one can use the three argument form of the command:

>> csim(’connect’,n,i,s); % input to neuron via synapse

10

2.5 Recording

The model is now fully implemented. In addition we want to record traces of some quantities
of interest. Suppose we want record the membrane potential and the spikes of neuron n as
well as the postsynaptic respones (the field psr) of the synapse. To do so we have to create
a Recorder object (Sec. 7.58) and tell this object which fields from which objects to record.
The recorder is created with the command

>> r=csim(’create’,’Recorder’);

and the following commands tell the recorder r to record the field psr of synapse s as its first
trace and the field Vm of neuron n as its second trace:

>> csim(’connect’,r,s,’psr’);
>> csim(’connect’,r,n,’Vm’);

Using the special field spikes the same syntax will be used to record the spikes of neuron n
as the third trace of recorder r.

>> csim(’connect’,r,n,’spikes’);

The following figure summarizes which objects we have created and how they are connected:

SpikingInputNeuron LifNeuronDynamicSpikingSynapse Recorder

spikes

Vm
psr

2.6 Setting up the input

Before we are ready to run the simulation we have to define the spike train which should
be emitted by the input neuron i. In CSIM time varying input signals (Sec. 3.1) (analog or
spiking) – also called the stimulus – are not considered to be properties/attributes of some
objects but are always explicitly specified. In the case of our example we will define a spike
train with randomly drawn spike times (for details see Section 3.1):

>> S.spiking = 1; % 1 ... spike times, 0 ... analog data
>> S.dt = NaN; % resolution for analog data
>> S.idx = i; % index/handle of receiving object
>> S.data = sort(rand(1,10)); % 10 random spikes in the interval 0 to 1 sec

2.7 Running the simulation

Now we are ready to run the simulation. The command

11

>> Tsim=1;
>> csim(’simulate’,Tsim,S);

simulates the simple model for 1 sec starting at time t = 03 with the stimulus S.

2.8 Plotting the recorded traces

The traces recorded by the recorder can be obtained by the command

>> t=csim(’get’,r,’traces’)

which yields the output

t =
channel: [1x3 struct]

A closer look at e.g. the first channel reveals that t.channel is a struct array with a similar
structure as we have seen above for the input signal:

>> t.channel(1)

ans =

idx: 1
fieldName: ’psr’

data: [1x2000 double]
spiking: 0

dt: 5.0000e-04

The output indicates that t.channel(1).data holds the psr trace
(t.channel(1).fieldName) with a resolution of 0.5 ms (t.channel(1).dt). See the
Recorder class documentation (Sec. 7.58) for details abput the structure of the trace output.
Similarly t.channel(2) holds the the Vm trace and t.channel(3) holds the output spike
times. Hence the following command will plot the psr trace

>> plot(t.channel(1).dt:t.channel(1).dt:Tsim,t.channel(1).data);

and the command

>> stem(t.channel(3).data,ones(size(t.channel(3).data)));

will draw the output spike train.

Using another set of plot commands one can easily create the following figure which shows the
input, the postsynaptic response and the output of the neuron (the voltage and the spikes)

3In general the simulation will be continued at the time where the last simulate command (Sec. 6.2.2)
stopped. However the first simulate command – as in the case of the example – starts at time t = 0. Simulation
time can be reset to time t = 0 with the reset command (Sec. 6.2.1) csim(’reset’);.

12

input spike train

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8
x 10

−7

ps
r

[A
]

postsynaptic response

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.08

−0.06

−0.04

−0.02

0

V
m

 [V
]

time [sec]

membrane potential and spikes

The full code of this example is contained as the file first model.m in the demo directory of
the CSIM package.

3 Input and Output

3.1 Input Signals

When runing a network simulation via csim(’simulate’,...); one can specify input signals
like in the command

>> csim(’simulate’,Tsim,S);

where S is a struct array with the following fields:

• S(i).idx : array of handles of objects which should receives this signal

• S(i).spiking : binary flag (0/1) which determines if S(i).data should be interpreted
as spike times or as an analog signal

• S(i).dt : time discretization; for analog signals (S(i).spiking=0) only

• S(i).data : signal data: vector of the analog values (S(i).spiking=0) or spike times
(S(i).spiking=1)

Note that csim(’simulate’,...); accepts an arbirary number of such struct arrays. See
documentation of the simulate command (Sec. 6.2.2).

13

http://www.lsm.tugraz.at/csim

3.2 Output

If one simulates a network then one also wants to record the quantities of interest. In our
introductory example (Sec. 2) we were interested in the membrane potential of the leaky-
integrate and fire neuron. CSIM can record any field of any object by means of Recorder
(Sec. 7.58) objects. The following code fragment shows how to set up a Recorder to record
the membrane potential (Vm) of a LifNeuron (Sec. 7.46) object with handle n.

>> rec = csim(’create’,’Recorder’);
>> csim(’connect’,rec,n,’Vm’);

Note that one Recorder object can record an arbitrary number of fields from arbitrary objects.

3.2.1 Getting results of the last simulation

After a network simulation via a command like

>> csim(’simulate’,Tsim,InputSignal);

the recorded data of the the last simulation Recorder rec can be obtained by the command

>> R=csim(’get’,rec,’traces’);

The exact structure of R for the recorder rec depends on the value of the field commonChannels
of the Recorder (Sec. 7.58) object.

commonChannels = 0 In this case (default) R is a struct array with the only field channel
which is in turn a struct array with a similar structure as an input signal (Sec. 3.1). That is

• R.channel(j).idx : handle of the object from which field the data was recorded

• R.channel(j).spiking : binary flag (0/1) which determines if data should be inter-
preted as spike times or as an analog signal

• R.channel(j).dt : time discretization; for analog signals only

• R.channel(j).data : signal data : vector of the analog values or spike times. Note
that the data always starts at time t = 0.

• R.channel(j).fieldName : name of the recorded field

commonChannels = 1 In this case R has two fields:

• R.data : A double array where R.data(j,s) is the s-th recorded value of the j-th field
recorded. Note that the data always starts at time t = 0. Remark: The number of values
which are recorded depends on the field dt of the Recorder object (Sec. 7.58).

• R.info : A struct array where R.info(j).idx is the handle of the object from which
the field R.info(j).fieldName is recorded.

14

3.2.2 Getting the results of a multi-stimulus simulation

Reminder: The command

>> R=csim(’get’,rec,’traces’);

returns only the results of the last simulation. In the case of a multi-stimulus simulation with
stimulus array S of length n this command returns only the result of the simulation with
stimulus S(n).

To get the results of all n simulations one has to use

>> R=csim(’simulate’,Tsim,S);

In that case R contains the results of all n stimulations. R{r}(s).channel contains the
recorded data of the r-th recorder during the s-th simulation (1 ≤ s ≤ n). R{r}(s).channel
is of the format as described in Section 3.2.1.

4 Additional Topics

4.1 How the network is simulated

CSIM employs a fixed time step simulation scheme for the integration of the differential
equations involved (represented by objects). Currently all objects use the exponential Euler
method with the same integration time step (see Section 4.2).

During each time step a certain method (advance) is called for each object part of the
simulation. There is a fixed schedule which depends a) on the class of the object and b) on
the time of creation. Here is the order of the classes.

1. Neuron

2. Synapse

3. Recorder

This means that all objects of classes derived from a generic Neuron are advanced first followed
by objects of classes derived from a generic Synapse and so on.

Note that for example a more detailed neuron model (like the CbNeuron (Sec. 7.19)) has to
advance all its child objects like ion channels.

After a csim(’simulate’,...) command returns the network is kept in its current state
at this time t. A further csim(’simulate’,...) command continues the simulation at this
time t. Use csim(’reset’); to reset the simulation to time t = 0.

Note that recorded traces you get by the appropriate get command (Sec. 6.4.1) always start
at time t = 0.

15

4.2 Global fields

There are a few fields which determine the global (i.e. not object specific) behavior of CSIM
which can be modified via the set command (Sec. 6.1.2):

>> csim(’set’,<fieldname>,<value>);

Read/writeable fields

dt The integration time step used by all objects

randSeed The seed value for the random number generator

verboseLevel How much stuff should be written to the console window (no effect yet!).

nThreads Number of threads to use for simulation (no effect yet!). The multi-threaded
version of CSIM is currently under development.

spikeOutput Flag: 1 ... always output spikes as last cell element, 0 do not output spikes
(obsolete).

The following fields are read-only:

t The current virtual (simulation) time

step The current time step; i.e. step=t/dt;

4.3 Event driven simulation

Since in a typical simulation the firing rate of the neurons is about 30 Hz and the time constant
of a synaptic current is typically about 3ms most of the time a synapse is “idle”. This
observation encouraged us to implement some ideas of event driven simulators like SpikeNet4:
We decided to cut off the very far tail of the exponential decaying synaptic responses (after
5 time constants) and remove those synapses from the list of active synapses (which are
advanced every time step). A synapse is re-activated if it receives a further spike. For large
networks with lots of synapses these idea results in an average speed-up of 2 to 3.

5 Adding your own C++ model classes to CSIM

This section describes how a user can add its own models to CSIM at the C++ level.
4http://www.cnl.salk.edu/~arno/spikenet/

16

http://www.cnl.salk.edu/~arno/spikenet/
http://www.cnl.salk.edu/~arno/spikenet/

5.1 Recipe

1. Create a copy of that existing model which is closest to that you wish to implement in
the directory lsm/csim/src. In the following we assume that the related files are called
MyModel.h and MyModel.cpp.

2. Implement your model.

3. Add you model to CSIM:

• Linux/Unix/: Add MyModel.o to the list of objects in the Makefile.

• Windows: Add MyModel.obj to the list of objects in the Makefile.win.

4. Compile CSIM:

• Linux/Unix/: Run the command make

• Windows: Run the command nmake -f Makefile.win

5. Use your model!

5.2 Details

During the compilation of CSIM a tool called reggen is used to generate wrapper code which
allows you to access the parameters of your model from the Matlab level. This frees you from
the tedious work of writing lots of code for getting and setting such fields. For more details
about this issue see the subsection 5.4.

If you are not using Linux or Windows you have to build the reggen tool which comes with
CSIM (lsm/develop/reggen) for your platform.5

1. Go to lsm/develop/reggen

2. Run

• configure; make; for Linux/Unix(/Mac OS)

• make.bat msvc for Windows XP with MS Visual C++

3. If this fails read lsm/develop/reggen/INSTALL and try to fix the build. In this case
you will notice that reggen is a modified version of the well known tool doxygen.

5.3 Hints for adding user defined models

• Don’t forget the line DO_REGISTERING in the class declaration of you model.

• Use doxygen comments to document your model.
5For Linux and Windows the precompiled reggen tool is located in lsm/develop/reggen/bin.

17

5.4 Setting and getting field values of objects

At the Matlab level CSIM allows you to set and get values of fields of objects by means of
the commands

v=csim(’get’,o,fieldname)

csim(’set’,o,fieldname,value)

where o is the handle of the object returned by

o=csim(’create’,classname)

and fieldname is a string identifying the field (i.e. the name of the field).

5.5 Implementaion

We implemented this mechanism using four classes:

• csimClass : the base classes of all classes in CSIM which implements the basic set and
get methodes for accessable fields

• csimClassInfoDB : a container (of csimClassInfo objects) where information about all
the (at the matlab level) available classes is stored

• csimClassInfo : which stores information (accessible fields, description) about a certain
class

• csimFieldInfo : stores information about a certain field of a given class

5.5.1 Registering classes and fields

To make the set and get methodes of a class derived from csimClass work one has to register
this class via csimClassInfoDB::registerCsimClass() and then to register each member variable
which we want to be an accessable field via csimClassInfo::registerField() .

Class member variable of the types

• double and double ∗

• float and float ∗

• int and int ∗

can be made accessible fields.

Each field has the following associated information (see csimFieldInfo)

18

• access : READWRITE or READONLY

• units

• lower and upper bound

• size : the number of elements if the field is of type float ∗, double ∗, or int ∗

5.5.2 reggen

It woul be a tedious work to code all the csimClassInfoDB::registerCsimClass() and csim-
ClassInfo::registerField() function calls by hand. So we decided to generate it automatically
from the source code. We use a tool named reggen (a quick and dirty hack based on doxygen)
to gather the infomation from the source code and its doxygen style documentation. reggen
writes all relevant function calls to register fields an classes to registerclass.i

Default behaviour of \c reggen

• public class member variables are registered as READWRITE fields

• protected class member variables are registered as READONLY

• private class member variables are not registered.

• no units are assumed (i.e. a dimensionless field)

• lower and upper bound are set to -Inf and +Inf respectively

• an warning is issued if no size information is given for arrays

• the brief doxygen comment is used as descriptio of the field

• the brief doxygen comment of a class is used as its description

Specifying information for use by reggen If you want to register a class you just put
the macro DO REGISTERING somewhere in the class definition.

For each of the member variables where you want to change the default behaviour of reggen
you have to put a doxygen brief comment where you specify the relevant information.

Example 1 Make the float variable S a read-writable field with units Volt and a lower and
upper bound of -1 and +1 respectively:

//! A voltage scale factor [readwrite; units=Volt; range=(-1,1);]

float S;

19

Example 2 Make the double variable ∗A a read-only field with 20 elements, units Ohm,
and a lower and upper bound of -100 and +100 respectively:

//! A voltage scale factor [readonly; size=20; units=Ohm; range=(-100,100);]

double *A;

Source code of reggen

• Currently reggen is maintained in lsm/develop/reggen .

• The relevant source file is lsm/develop/reggen/src/defgen.cpp .

• The binaries are lsm/develop/reggen/bin/reggen for Linux and
lsm/develop/reggen/bin/reggen.exe for windows.

• To compile reggen under Linux type

cd lsm/develop/reggen; ./configure; make

• To compile reggen under Windows XP with MS Visual C++ type

cd lsm/develop/reggen; make.bat msvc

20

6 CSIM command reference

The common form of all CSIM commands is

csim(command,...);

where command is one of the following strings:

• ’create’ (Sec. 6.1.1) : Create an object of a certain class
• ’set’ (Sec. 6.1.2) : Set fields of an object
• ’connect’ (Sec. 6.1.3) : Connect objects
• ’get’ (Sec. 6.4.1) : Get field values of an object
• ’reset’ (Sec. 6.2.1) : Reset the simulation to t = 0.0
• ’simulate’ (Sec. 6.2.2) : Simulate the network
• ’export’ (Sec. 6.3.1) : Export the network for saving it
• ’import’ (Sec. 6.3.2) : Import a loaded network
• ’destroy’ (Sec. 6.3.3) : Destroy/delete the current netork
• ’list’ (Sec. 6.4.2) or ’ls’ (Sec. 6.4.2) List various items
• ’version’ (Sec. 6.4.3) : Print out a version string

A detailed description of each of the commands follows.

6.1 Setting up a network simulation

6.1.1 create

• idx=csim(’create’,class); creates an object of the class specified by the string class
and returns a uint32 index or handle for the created object. This index/handle is the
only means to access the created object.

• idx=csim(’create’,class,N); creates N objects of the class specified by the string
class and returns a uint32 vector of indices/handles for the created objects.

The handles returned by idx=csim(’create’,...); are used to identify the objects later in
’set’, ’get’ and ’connect’ calls.

See the Class Reference (Sec. 7) for a full description of all available classes.

6.1.2 set

• csim(’set’,field,value); sets the network field (Sec. 4.2) specified by the string
field to value.

• csim(’set’,idx,field,value); sets the field specified by the string field of the
object with index/handle idx to value. idx can also be a vector of indices/handles of
objects of the same class.

If idx is a vector and value is a scalar then the fields of all objects are set to value.

If idx and value are vectors of the same size then the field field of all objects idx(i)
is set to value(i).

21

• csim(’set’,idx,f1,v1,f2,f2,...,fn,vn); sets the fields specified by the strings f1,
f2, ..., fn of the object with index/handle idx to the values v1, v2, ... vn. idx and v1,
v2, ... vn can also be vectors.

6.1.3 connect

• csim(’connect’,dstIdx,srcIdx); sets up a signal flow from the source srcIdx object
(e.g. a synapse) to the destination object dstIdx (e.g. the postsynaptic neuron) where
dstIdx and srcIdx are indices/handles to objects.

dstIdx and srcIdx can also be vectors. In that case for each i=1:length(srcIdx); a
signal flow dstIdx(i)← srcIdx(i) is set up.

• csim(’connect’, dstIdx, srIdx, viaIdx); for each i=1:length(srcIdx); a signal
flow of the form dstIdx(i)← viaIdx(i)← srcIdx(i) is set up where dstIdx, srcIdx,
and viaIdx are vectors of the same length of indices/handles to objects.

• csim(’connect’,recIdx,objIdx,fieldName); connects the object with handle
objIdx to the recorder with handle recIdx. The recorder recIdx will then record
a trace of the values of the field fieldName of the objects specified by the vector of
hadles objIdx.

6.2 Running the network simulation

6.2.1 reset

csim(’reset’); resets the simulation time t back to t = 0.0.

6.2.2 simulate

• csim(’simulate’,Tsim,InputSignals); runs the network simulation for Tsim sec-
onds starting at the time where the last simulate command stopped with input signals
InputSignals (Sec. 3.1).

• csim(’simulate’,Tsim,I1,I2,...,In); same as above but with input signals I1 to
In. There is no special meaning in the ordering of the input signals. It is equvivalent
to concatenate I1 to In into one struct array and pass this array as the single input
signal.

• R=csim(’simulate’,Tsim,InputSignals);
same as csim(’simulate’,Tsim,InputSignals); but in addition returns the cell array
R which holds the output (traces) of all Recorder objects (Sec. 3.2).

• R=csim(’simulate’,Tsim,I1,I2,...,In);
same as csim(’simulate’,Tsim,I1,I2,...,In); but in addition returns the cell array
R which holds the output (traces) of all Recorder objects (Sec. 3.2).

22

• R=csim(’simulate’,Tsim,I1,I2,...,In);
same as csim(’simulate’,Tsim,I1,I2,...,In); but in addition returns the cell array
R which holds the output (traces) of all Recorder objects (Sec. 3.2).

6.3 Saving, loading and deleting networks

6.3.1 export

The command

net = csim(’export’);

produces a struct array net which contains all information about the current network simu-
lation which is needed to set up the simulation. Using save file.mat net you can save the
whole network simulation.

NOTE: The struct array net returned by net=csim(’export’); is only intended to be saved
to disk for later use by csim(’import’,net); and does not have a human readable form.

6.3.2 import

The command

csim(’import’,net);

allows you to set up a network simulation from the struct array net which has previously been
generated by net = csim(’export’);. In combination with the matlab command load this
CSIM command serves the purpose of loading a simulation from disk.

If the current network (either explicitly specified or default network) does not contain any
objects the net will be imported into that network. If there are already objects a new network
will be created and and net will be imported to that.

NOTE: The struct array net returned by net=csim(’export’); does not contain information
about the current state of the simulation at time t. Hence it is only possible to start simulation
based on such an arry at time t = 0.0.

6.3.3 destroy

csim(’destroy’); all the networks.

6.4 Displaying/Getting information

6.4.1 get

• csim(’get’); diplays the values of the global fields (Sec. 4.2)

• v=csim(’get’,field); return the value of the global field (Sec. 4.2) specified by the
string field

23

• csim(’get’,idx); displays the values of all fields of the object specified by the array
index/handle idx

• v=csim(’get’,idx,field); returns a double array v where v(:,i) contains the values
of the field field of the object with index/handle idx(i).

• o=csim(’get’,idx,’struct’); return a struct array describing the object specified by
the index/handle idx(1):

– o.className : String containing the name of class of object

– o.spiking : Double value which is 1 if the object is a spike emitting object (0
otherwise)

– o.fields : Cell array of strings containing the field names of the object

– and all fields with its values.

• [incomming,outgoing]=csim(’get’,idx,’connections’); returns the in-
dices/handles of the incomming (i.e. input delivering) and outgoing (i.e. output
receiving) objects of the object specified by the index/handle idx. This is currently
only implemented for Synapses and Neurons.

• R=csim(’get’,recorder idx,’traces’); returns the traces of the fields recorded by
the Recorder (Sec. 7.58) object with handle recorder idx during the last simulation.
See the Recorder documentation (Sec. 7.58) for details about the format of R.

6.4.2 list

• csim(’list’); and csim(’list’,’classes’); print a list of all available classes

• csim(’list’,’classes’,’-fields’); prints a list of all available classes with infor-
mation about the fields of each class. Read/writeable fields are marked by a ’=’ between
the field name and its description, wheres a ’:’ denotes a read-only field.

• csim(’list’,’objects’); prints a list of all created objects

• csim(’list’,’objects’,’-fields’); prints a list of all created objects and the values
of its fields. Read/writeable fields are marked by a ’=’ between the field name and its
value, wheres a ’:’ denotes a read-only field.

• csim(’list’,’networks’); prints a list of all networks

• csim(’list’,’networks’,’-fields’); prints a list of all networks and the values of
its fields. Read/writeable fields are marked by a ’=’ between the field name and its
value, wheres a ’:’ denotes a read-only field.

Not that instead of ’list’ one can use ’ls’ as a shortcut.

24

6.4.3 version

• csim(’version’) prints a version string

• v=csim(’version’); returns the version string

7 CSIM model classe reference

7.1 AChannel Hoffman97

Uses AmGate Hoffman97 and AhGate Hoffman97

Reference: Hoffman, D., Magee, J.C., Colbert, C.M., and Johnston, D. Potassium channel
regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature
387:869-875 (1997)

Read/writable Fields

Gbar (S) : The maximum conductance of the channel;
Erev (V) : The reversal potential Erev of the channel

Readonly Fields

g (S) : The coductance g(t, Vm) of the channel

7.2 AChannel Korngreen02

Uses AnGate Korngreen02 and AlGate Korngreen02

Reference: Korngreen A, Sakmann B.Voltage-gated K+ channels in layer 5 neocortical pyra-
midal neurones from young rats: subtypes and gradients. J Physiol. 2000 Jun 15;525 Pt
3:621-39.

Read/writable Fields

Ts : Scale of the time constants of the gating variables τ(V)
Gbar (S) : The maximum conductance of the channel;
Erev (V) : The reversal potential Erev of the channel

Readonly Fields

g (S) : The coductance g(t, Vm) of the channel

25

7.3 ActiveCaChannel

Read/writable Fields

Gbar (S) : The maximum conductance of the channel;
Erev (V) : The reversal potential Erev of the channel

Readonly Fields

g (S) : The coductance g(t, Vm) of the channel

7.4 ActiveChannel

The Model

Generic active channel with arbitray number of ion gates . g(t, Vm) is computed as

g(t, Vm) = ḡ
∏
i

Pi(t, Vm)

where ḡ is the maximal conductance, and Pi(t, Vm) ∈ [0, 1] is fraction of i -type gates currently
open.

Note that no specific gates are modeled. Instead arbitrary ion gate objects can be connected
to the channel.

Read/writable Fields

Gbar (S) : The maximum conductance of the channel;
Erev (V) : The reversal potential Erev of the channel

Readonly Fields

g (S) : The coductance g(t, Vm) of the channel

7.5 AHP Channel

Reference: Fuhrmann G, Markram H, Tsodyks M. Spike frequency adaptation and neocortical
rhythms. J Neurophysiol. 2002 Aug;88(2):761-70.

Read/writable Fields

Gbar (S) : The maximum conductance of the channel;
u : Constant step increase in n for each spike;
Ts : Time constant for the deactivation of the current;
Erev (V) : The reversal potential Erev of the channel

26

Readonly Fields

n : Fraction of the open conductance;
g (S) : The coductance g(t, Vm) of the channel

7.6 AlphaSpikeFilter

Read/writable Fields

m tau1 : Time constant 1.
m tau2 : Time constant 2.

Readonly Fields

nChannels : Number of Input channels to filter.
m dt : Time step length.
nValuesPerChannel : Number of values stored for each channel in lastValues.

7.7 AnalogFeedbackNeuron

Read/writable Fields

feedback : Feedback-Mode: 0 = external input, 1 = feedback
Vresting (V) : The resting membrane voltage.
Inoise (A2) : The noise of analog neurons
type : Type (e.g. inhibitory or excitatory) of the neuron

Readonly Fields

Vm (V) : The current output (potential) of this neuron
VmOut : The vlaue wich will actualle be propagated to the outgoing synapses.
nIncoming : Number of incoming synapses
nOutgoing : Number of outgoing synapses

7.8 AnalogInputNeuron

Read/writable Fields

Vresting (V) : The resting membrane voltage.
Inoise (A2) : The noise of analog neurons
type : Type (e.g. inhibitory or excitatory) of the neuron

27

Readonly Fields

Vm (V) : The current output (potential) of this neuron
VmOut : The vlaue wich will actualle be propagated to the outgoing synapses.
nIncoming : Number of incoming synapses
nOutgoing : Number of outgoing synapses

7.9 AnalogTeacher

7.10 ArmModel

Read/writable Fields

mintheta1 : Baseline parameter for theta1.
mintheta2 : Baseline parameter for theta2.
minU1 : Baseline parameter for U1.
minU2 : Baseline parameter for U2.
model DT : The time-step of simulation.
Xo : The X coordinate of origin.
Yo : The Y coordinate of origin.
m1 : The mass of 1st link.
m2 : The mass of second link.
lc1 : The distance of central point of link 1.
lc2 : The distance of central point of link 2.
l1 : Length of first link.
l2 : Length of second link.
I1 : The moment of inertia of link1.
I2 : The moment of inertia of link2.
MFACT : The factor by which the external noise will be proportional to the input magnitude.
PERT TIME : The time at which the perturbation will start.
DURATION : The duration of perturbation.
inputFileNr : The file-number for input of Xdest, Ydest, Theta1, Theta2 (file-name is ’T(x).mat’,

where (x) is this number.

Readonly Fields

t1 : Angle theta 1.
t2 : Angle theta 2.
w1 : Angular velocity 1 (updated every time step).
w2 : Angular velocity 2 (updated every time step).
u1 : Torque 1 (updated every time step).
u2 : Torque 2 (updated every time step).
nIncoming : Number of inputs
nOutputChannels : Number of output channels

28

7.11 bNACNeuron

Uses AHP Channel

Read/writable Fields

STempHeight (V olt) : Height
Vthresh (V) : If Vm exceeds Vthresh a spike is emmited.
Vreset (V) : The voltage to reset Vm to after a spike.
doReset (flag) : Flag which determines wheter Vm should be reseted after a spike
Trefract (sec) : Length of the absolute refractory period.
nummethod (flag) : Numerical method for the solution of the differential equation: Exp. Euler =

0, Crank-Nicolson = 1
type : Type (e.g. inhibitory or excitatory) of the neuron
Cm (F) : The membrane capacity Cm

Rm (Ohm) : The membrane resistance Rm

Vresting (V) : The resting membrane voltage.
Vinit (V) : Initial condition forVm at time t = 0.
VmScale (V) : Defines the difference between Vresting and the Vthresh for the calculation of the

iongate tables and the ionbuffer Erev.
Inoise (W 2) : Variance of the noise to be added each integration time constant.
Iinject (A) : Constant current to be injected into the CB neuron.

Readonly Fields

Em (V) : The reversal potential of the leakage channel
Vm (V) : The membrane voltage
Isyn : synaptic input current
Gsyn : synaptic input conductance
nIncoming : Number of incoming synapses
nOutgoing : Number of outgoing synapses
nBuffers : Number of ion buffers
nChannels : Number of channels

7.12 bNACOUNeuron

Uses AHP Channel

Read/writable Fields

ge (S) : exc and inh conductances (noise)
gi (S) : exc and inh conductances (noise)
ge0 (S) : exc and inh mean conductances (noise)
gi0 (S) : exc and inh mean conductances (noise)
tau e (S) : time constants and std for exc and inh conductances (noise)

29

tau i (S) : time constants and std for exc and inh conductances (noise)
sig e (S) : time constants and std for exc and inh conductances (noise)
sig i (S) : time constants and std for exc and inh conductances (noise)
Ee (V) : Reversal potential for exc and inh currents (noise)
Ei (V) : Reversal potential for exc and inh currents (noise)
STempHeight (V olt) : Height
Vthresh (V) : If Vm exceeds Vthresh a spike is emmited.
Vreset (V) : The voltage to reset Vm to after a spike.
doReset (flag) : Flag which determines wheter Vm should be reseted after a spike
Trefract (sec) : Length of the absolute refractory period.
nummethod (flag) : Numerical method for the solution of the differential equation: Exp. Euler =

0, Crank-Nicolson = 1
type : Type (e.g. inhibitory or excitatory) of the neuron
Cm (F) : The membrane capacity Cm

Rm (Ohm) : The membrane resistance Rm

Vresting (V) : The resting membrane voltage.
Vinit (V) : Initial condition forVm at time t = 0.
VmScale (V) : Defines the difference between Vresting and the Vthresh for the calculation of the

iongate tables and the ionbuffer Erev.
Inoise (W 2) : Variance of the noise to be added each integration time constant.
Iinject (A) : Constant current to be injected into the CB neuron.

Readonly Fields

Em (V) : The reversal potential of the leakage channel
Vm (V) : The membrane voltage
OuInoise : noise input current
OuGnoise : noise input conductance
Isyn : synaptic input current
Gsyn : synaptic input conductance
nIncoming : Number of incoming synapses
nOutgoing : Number of outgoing synapses
nBuffers : Number of ion buffers
nChannels : Number of channels

7.13 CaChannel Yamada98

From: Yamada, Koch and Adams: Multiple Channels and Calcium Dynamics, Editors: Koch,
Segev, MIT Press 1998) Ca mechanism is included in the channel class not the neuron class.

Read/writable Fields

u (Mol) : Constant step increase in the calcium concentration
Ts (Sec) : Time constant for the deactivation of the calcium concentration
Ca (Mol) : Interior calcium concentration
Gbar (S) : The maximum conductance of the channel;
Erev (V) : The reversal potential Erev of the channel

30

Readonly Fields

g (S) : The coductance g(t, Vm) of the channel

7.14 cACNeuron

Uses AHP Channel

Read/writable Fields

STempHeight (V olt) : Height
Vthresh (V) : If Vm exceeds Vthresh a spike is emmited.
Vreset (V) : The voltage to reset Vm to after a spike.
doReset (flag) : Flag which determines wheter Vm should be reseted after a spike
Trefract (sec) : Length of the absolute refractory period.
nummethod (flag) : Numerical method for the solution of the differential equation: Exp. Euler =

0, Crank-Nicolson = 1
type : Type (e.g. inhibitory or excitatory) of the neuron
Cm (F) : The membrane capacity Cm

Rm (Ohm) : The membrane resistance Rm

Vresting (V) : The resting membrane voltage.
Vinit (V) : Initial condition forVm at time t = 0.
VmScale (V) : Defines the difference between Vresting and the Vthresh for the calculation of the

iongate tables and the ionbuffer Erev.
Inoise (W 2) : Variance of the noise to be added each integration time constant.
Iinject (A) : Constant current to be injected into the CB neuron.

Readonly Fields

Em (V) : The reversal potential of the leakage channel
Vm (V) : The membrane voltage
Isyn : synaptic input current
Gsyn : synaptic input conductance
nIncoming : Number of incoming synapses
nOutgoing : Number of outgoing synapses
nBuffers : Number of ion buffers
nChannels : Number of channels

7.15 cACOUNeuron

Uses AHP Channel

31

Read/writable Fields

ge (S) : exc and inh conductances (noise)
gi (S) : exc and inh conductances (noise)
ge0 (S) : exc and inh mean conductances (noise)
gi0 (S) : exc and inh mean conductances (noise)
tau e (S) : time constants and std for exc and inh conductances (noise)
tau i (S) : time constants and std for exc and inh conductances (noise)
sig e (S) : time constants and std for exc and inh conductances (noise)
sig i (S) : time constants and std for exc and inh conductances (noise)
Ee (V) : Reversal potential for exc and inh currents (noise)
Ei (V) : Reversal potential for exc and inh currents (noise)
STempHeight (V olt) : Height
Vthresh (V) : If Vm exceeds Vthresh a spike is emmited.
Vreset (V) : The voltage to reset Vm to after a spike.
doReset (flag) : Flag which determines wheter Vm should be reseted after a spike
Trefract (sec) : Length of the absolute refractory period.
nummethod (flag) : Numerical method for the solution of the differential equation: Exp. Euler =

0, Crank-Nicolson = 1
type : Type (e.g. inhibitory or excitatory) of the neuron
Cm (F) : The membrane capacity Cm

Rm (Ohm) : The membrane resistance Rm

Vresting (V) : The resting membrane voltage.
Vinit (V) : Initial condition forVm at time t = 0.
VmScale (V) : Defines the difference between Vresting and the Vthresh for the calculation of the

iongate tables and the ionbuffer Erev.
Inoise (W 2) : Variance of the noise to be added each integration time constant.
Iinject (A) : Constant current to be injected into the CB neuron.

Readonly Fields

Em (V) : The reversal potential of the leakage channel
Vm (V) : The membrane voltage
OuInoise : noise input current
OuGnoise : noise input conductance
Isyn : synaptic input current
Gsyn : synaptic input conductance
nIncoming : Number of incoming synapses
nOutgoing : Number of outgoing synapses
nBuffers : Number of ion buffers
nChannels : Number of channels

7.16 CaGate Yamada98

From: Yamada, Koch and Adams: Multiple Channels and Calcium Dynamics, Editors: Koch,
Segev, MIT Press 1998). Can only be connected to CaChannel Yamada98 class, where the
Ca mechanism is included

32

Read/writable Fields

Ts : Scale of the time constant τ(Ca)
nummethod (flag) : Numerical method for the solution of the differential equation: Exp. Euler =

0, Crank-Nicolson = 1
k (1) : The exponent of the gate
p : The state variable.

Readonly Fields

P (1) : The output P (t, V) = p(t, V)k of the gate.

7.17 CALChannel Destexhe98

Uses CALmGate Destexhe98 and CALhGate Destexhe98

Reference: Destexhe A, Contreras D, Steriade M. Mechanisms underlying the synchronizing
action of corticothalamic feedback through inhibition of thalamic relay cells. J Neurophysiol.
1998 Feb;79(2):999-1016.

Read/writable Fields

Ts : Scale of the time constants of the gating variables τ(V)
Gbar (S) : The maximum conductance of the channel;
Erev (V) : The reversal potential Erev of the channel

Readonly Fields

g (S) : The coductance g(t, Vm) of the channel

7.18 CbNeuronSt

The Model

The membrane voltage Vm is governed by

Cm
Vm

dt
= −Vm − Em

Rm
−

Nc∑
c=1

gc(t)(Vm − Ec
rev) +

Ns∑
s=1

Is(t) +
Gs∑
s=1

gs(t)(Vm − E(s)
rev) + Iinject

with the following meanings of symbols

• Cm membrane capacity (Farad)

• Em reversal potential of the leak current (Volts)

• Rm membrane resistance (Ohm)

• Nc total number of channels (active + synaptic)

33

• gc(t) current conductance of channel c (Siemens)

• Ec
rev reversal potential of channel c (Volts)

• Ns total number of current supplying synapses

• Is(t) current supplied by synapse s (Ampere)

• Gs total number of coductance based synapses

• gs(t) coductance supplied by synapse s (Siemens)

• E
(s)
rev reversal potential of synapse s (Volts)

• Iinject injected current (Ampere)

At time t = 0 Vm ist set to Vinit .

The value of Em is calculated to compensate for ionic currents such that Vm actually has a
resting value of Vresting .

Spiking and reseting the membrane voltage

If the membrane voltage Vm exceeds the threshold Vtresh the CbNeuronSt sends a spike to all
its outgoing synapses and the membrane voltage follows a predefined spike templage
during the absolute refractory period of length Trefract if doReset = 1.

If the flag doReset=0 the spike template is not applied and the above equation is also applied
during the absolute refractory period but the event of threshold crossing is transmitted as a
spike to outgoing synapses. This is usfull if one includes channels which produce a real action
potential (see HH K Channel and HH Na Channel) but one still just wants to communicate
the spikes as events in time.

Implementation

The exponential Euler method is used for numerical integration.

Read/writable Fields

STempHeight (V olt) : Height
Vthresh (V) : If Vm exceeds Vthresh a spike is emmited.
Vreset (V) : The voltage to reset Vm to after a spike.
doReset (flag) : Flag which determines wheter Vm should be reseted after a spike
Trefract (sec) : Length of the absolute refractory period.
nummethod (flag) : Numerical method for the solution of the differential equation: Exp. Euler =

0, Crank-Nicolson = 1
type : Type (e.g. inhibitory or excitatory) of the neuron
Cm (F) : The membrane capacity Cm

Rm (Ohm) : The membrane resistance Rm

34

Vresting (V) : The resting membrane voltage.
Vinit (V) : Initial condition forVm at time t = 0.
VmScale (V) : Defines the difference between Vresting and the Vthresh for the calculation of the

iongate tables and the ionbuffer Erev.
Inoise (W 2) : Variance of the noise to be added each integration time constant.
Iinject (A) : Constant current to be injected into the CB neuron.

Readonly Fields

Em (V) : The reversal potential of the leakage channel
Vm (V) : The membrane voltage
Isyn : synaptic input current
Gsyn : synaptic input conductance
nIncoming : Number of incoming synapses
nOutgoing : Number of outgoing synapses
nBuffers : Number of ion buffers
nChannels : Number of channels

7.19 CbNeuron

The Model

The membrane voltage Vm is governed by

Cm
Vm

dt
= −Vm − Em

Rm
−

Nc∑
c=1

gc(t)(Vm − Ec
rev) +

Ns∑
s=1

Is(t) +
Gs∑
s=1

gs(t)(Vm − E(s)
rev) + Iinject

with the following meanings of symbols

• Cm membrane capacity (Farad)

• Em reversal potential of the leak current (Volts)

• Rm membrane resistance (Ohm)

• Nc total number of channels (active + synaptic)

• gc(t) current conductance of channel c (Siemens)

• Ec
rev reversal potential of channel c (Volts)

• Ns total number of current supplying synapses

• Is(t) current supplied by synapse s (Ampere)

• Gs total number of coductance based synapses

• gs(t) coductance supplied by synapse s (Siemens)

• E
(s)
rev reversal potential of synapse s (Volts)

35

• Iinject injected current (Ampere)

At time t = 0 Vm ist set to Vinit .

The value of Em is calculated to compensate for ionic currents such that Vm actually has a
resting value of Vresting .

Spiking and reseting the membrane voltage

If the membrane voltage Vm exceeds the threshold Vtresh the CbNeuron sends a spike to all
its outgoing synapses.

The membrane voltage is reseted and clamped during the absolute refractory period of length
Trefract to Vreset if the flag doReset=1. This is similar to a LIF neuron (see LifNeuron).

If the flag doReset=0 the membrane voltage is not reseted and the above equation is also
applied during the absolute refractory period but the event of threshold crossing is transmitted
as a spike to outgoing synapses. This is usfull if one includes channels which produce a
real action potential (see HH K Channel and HH Na Channel) but one still just wants to
communicate the spikes as events in time.

Implementation

The exponential Euler method is used for numerical integration.

Read/writable Fields

Vthresh (V) : If Vm exceeds Vthresh a spike is emmited.
Vreset (V) : The voltage to reset Vm to after a spike.
doReset (flag) : Flag which determines wheter Vm should be reseted after a spike
Trefract (sec) : Length of the absolute refractory period.
nummethod (flag) : Numerical method for the solution of the differential equation: Exp. Euler =

0, Crank-Nicolson = 1
type : Type (e.g. inhibitory or excitatory) of the neuron
Cm (F) : The membrane capacity Cm

Rm (Ohm) : The membrane resistance Rm

Vresting (V) : The resting membrane voltage.
Vinit (V) : Initial condition forVm at time t = 0.
VmScale (V) : Defines the difference between Vresting and the Vthresh for the calculation of the

iongate tables and the ionbuffer Erev.
Inoise (W 2) : Variance of the noise to be added each integration time constant.
Iinject (A) : Constant current to be injected into the CB neuron.

36

Readonly Fields

Em (V) : The reversal potential of the leakage channel
Vm (V) : The membrane voltage
Isyn : synaptic input current
Gsyn : synaptic input conductance
nIncoming : Number of incoming synapses
nOutgoing : Number of outgoing synapses
nBuffers : Number of ion buffers
nChannels : Number of channels

7.20 CbStOuNeuron

The Model

The membrane voltage Vm is governed by

Cm
Vm

dt
= −Vm − Em

Rm
−

Nc∑
c=1

gc(t)(Vm−Ec
rev)+

Ns∑
s=1

Is(t)+
Gs∑
s=1

gs(t)(Vm−E(s)
rev)+gexz

noise(t)(Vm−Eexc
noise)+ginh

noise(t)(Vm−Einh
noise)+Iinject

with the following meanings of symbols

• Cm membrane capacity (Farad)

• Em reversal potential of the leak current (Volts)

• Rm membrane resistance (Ohm)

• Nc total number of channels (active + synaptic)

• gc(t) current conductance of channel c (Siemens)

• Ec
rev reversal potential of channel c (Volts)

• Ns total number of current supplying synapses

• Is(t) current supplied by synapse s (Ampere)

• Gs total number of coductance based synapses

• gs(t) coductance supplied by synapse s (Siemens)

• E
(s)
rev reversal potential of synapse s (Volts)

• gexz
noise(t) excitatory coductance given Ornstein Uhlenbeck process noise

• Eexc
noise reversal potential for excitatory Ornstein Uhlenbeck process noise

• ginh
noise(t) inhibitory coductance given Ornstein Uhlenbeck process noise

• Einh
noise reversal potential for inhibitory Ornstein Uhlenbeck process noise

37

• Iinject injected current (Ampere)

At time t = 0 Vm ist set to Vinit .

The value of Em is calculated to compensate for ionic currents such that Vm actually has a
resting value of Vresting .

Spiking and reseting the membrane voltage

If the membrane voltage Vm exceeds the threshold Vtresh the CbNeuronSt sends a spike to all
its outgoing synapses and the membrane voltage follows a predefined spike templage
during the absolute refractory period of length Trefract if doReset = 1.

If the flag doReset=0 the spike template is not applied and the above equation is also applied
during the absolute refractory period but the event of threshold crossing is transmitted as a
spike to outgoing synapses. This is usfull if one includes channels which produce a real action
potential (see HH K Channel and HH Na Channel) but one still just wants to communicate
the spikes as events in time.

Implementation

The exponential Euler method is used for numerical integration.

Read/writable Fields

ge (S) : exc and inh conductances (noise)
gi (S) : exc and inh conductances (noise)
ge0 (S) : exc and inh mean conductances (noise)
gi0 (S) : exc and inh mean conductances (noise)
tau e (S) : time constants and std for exc and inh conductances (noise)
tau i (S) : time constants and std for exc and inh conductances (noise)
sig e (S) : time constants and std for exc and inh conductances (noise)
sig i (S) : time constants and std for exc and inh conductances (noise)
Ee (V) : Reversal potential for exc and inh currents (noise)
Ei (V) : Reversal potential for exc and inh currents (noise)
STempHeight (V olt) : Height
Vthresh (V) : If Vm exceeds Vthresh a spike is emmited.
Vreset (V) : The voltage to reset Vm to after a spike.
doReset (flag) : Flag which determines wheter Vm should be reseted after a spike
Trefract (sec) : Length of the absolute refractory period.
nummethod (flag) : Numerical method for the solution of the differential equation: Exp. Euler =

0, Crank-Nicolson = 1
type : Type (e.g. inhibitory or excitatory) of the neuron
Cm (F) : The membrane capacity Cm

Rm (Ohm) : The membrane resistance Rm

Vresting (V) : The resting membrane voltage.
Vinit (V) : Initial condition forVm at time t = 0.

38

VmScale (V) : Defines the difference between Vresting and the Vthresh for the calculation of the
iongate tables and the ionbuffer Erev.

Inoise (W 2) : Variance of the noise to be added each integration time constant.
Iinject (A) : Constant current to be injected into the CB neuron.

Readonly Fields

Em (V) : The reversal potential of the leakage channel
Vm (V) : The membrane voltage
OuInoise : noise input current
OuGnoise : noise input conductance
Isyn : synaptic input current
Gsyn : synaptic input conductance
nIncoming : Number of incoming synapses
nOutgoing : Number of outgoing synapses
nBuffers : Number of ion buffers
nChannels : Number of channels

7.21 CountSpikeFilter

Read/writable Fields

time window : Length of time window.

Readonly Fields

nChannels : Number of Input channels to filter.
m dt : Time step length.
nValuesPerChannel : Number of values stored for each channel in lastValues.

7.22 DiscretizationPreprocessor

Readonly Fields

nInputRows : Number of rows for input vectors.
nOutputRows : Number of rows for output vectors.

7.23 dNACNeuron

Uses AChannel Hoffman97

39

Read/writable Fields

STempHeight (V olt) : Height
Vthresh (V) : If Vm exceeds Vthresh a spike is emmited.
Vreset (V) : The voltage to reset Vm to after a spike.
doReset (flag) : Flag which determines wheter Vm should be reseted after a spike
Trefract (sec) : Length of the absolute refractory period.
nummethod (flag) : Numerical method for the solution of the differential equation: Exp. Euler =

0, Crank-Nicolson = 1
type : Type (e.g. inhibitory or excitatory) of the neuron
Cm (F) : The membrane capacity Cm

Rm (Ohm) : The membrane resistance Rm

Vresting (V) : The resting membrane voltage.
Vinit (V) : Initial condition forVm at time t = 0.
VmScale (V) : Defines the difference between Vresting and the Vthresh for the calculation of the

iongate tables and the ionbuffer Erev.
Inoise (W 2) : Variance of the noise to be added each integration time constant.
Iinject (A) : Constant current to be injected into the CB neuron.

Readonly Fields

Em (V) : The reversal potential of the leakage channel
Vm (V) : The membrane voltage
Isyn : synaptic input current
Gsyn : synaptic input conductance
nIncoming : Number of incoming synapses
nOutgoing : Number of outgoing synapses
nBuffers : Number of ion buffers
nChannels : Number of channels

7.24 dNACOUNeuron

Uses AChannel Hoffman97

Read/writable Fields

ge (S) : exc and inh conductances (noise)
gi (S) : exc and inh conductances (noise)
ge0 (S) : exc and inh mean conductances (noise)
gi0 (S) : exc and inh mean conductances (noise)
tau e (S) : time constants and std for exc and inh conductances (noise)
tau i (S) : time constants and std for exc and inh conductances (noise)
sig e (S) : time constants and std for exc and inh conductances (noise)
sig i (S) : time constants and std for exc and inh conductances (noise)
Ee (V) : Reversal potential for exc and inh currents (noise)
Ei (V) : Reversal potential for exc and inh currents (noise)

40

STempHeight (V olt) : Height
Vthresh (V) : If Vm exceeds Vthresh a spike is emmited.
Vreset (V) : The voltage to reset Vm to after a spike.
doReset (flag) : Flag which determines wheter Vm should be reseted after a spike
Trefract (sec) : Length of the absolute refractory period.
nummethod (flag) : Numerical method for the solution of the differential equation: Exp. Euler =

0, Crank-Nicolson = 1
type : Type (e.g. inhibitory or excitatory) of the neuron
Cm (F) : The membrane capacity Cm

Rm (Ohm) : The membrane resistance Rm

Vresting (V) : The resting membrane voltage.
Vinit (V) : Initial condition forVm at time t = 0.
VmScale (V) : Defines the difference between Vresting and the Vthresh for the calculation of the

iongate tables and the ionbuffer Erev.
Inoise (W 2) : Variance of the noise to be added each integration time constant.
Iinject (A) : Constant current to be injected into the CB neuron.

Readonly Fields

Em (V) : The reversal potential of the leakage channel
Vm (V) : The membrane voltage
OuInoise : noise input current
OuGnoise : noise input conductance
Isyn : synaptic input current
Gsyn : synaptic input conductance
nIncoming : Number of incoming synapses
nOutgoing : Number of outgoing synapses
nBuffers : Number of ion buffers
nChannels : Number of channels

7.25 DynamicSpikingCbSynapse

The conductance g(t) of the synapse is increased by W ·r ·u when a presynaptic spike hits the
synapse and decays exponentially (time constant τ) otherwise. u and r model the current
state of facilitation and depression.

Read/writable Fields

E : Equilibrium potential given by the Nernst equation.
U : The use parameter of the dynamic synapse
D (sec) : The time constant of the depression of the dynamic synapse
F (sec) : The time constant of the facilitation of the dynamic synapse
u0 : Value of the time varying facilitation state variable u for the first spike
r0 : Value of the time varying depression state variable r for the first spike
tau (sec) : The synaptic time constant τ

W : The weight (scaling factor, strenght, maximal amplitude) of the synapse
delay (sec) : The synaptic transmission delay

41

Readonly Fields

u : The time varying state variable u for facilitation
r : The time varying state variable u for depression
psr : The psr (postsynaptic response) is the result of whatever computation is going on in a synapse.
steps2cutoff :

7.26 DynamicSpikingSynapse

The time varying state x(t) of the synapse is increased by W · r · u when a presynaptic spike
hits the synapse and decays exponentially (time constant τ) otherwise. u and r model the
current state of facilitation and depression.

Read/writable Fields

U : The use parameter of the dynamic synapse
D (sec) : The time constant of the depression of the dynamic synapse
F (sec) : The time constant of the facilitation of the dynamic synapse
u0 : Value of the time varying facilitation state variable u for the first spike
r0 : Value of the time varying depression state variable r for the first spike
tau (sec) : The synaptic time constant τ

W : The weight (scaling factor, strenght, maximal amplitude) of the synapse
delay (sec) : The synaptic transmission delay

Readonly Fields

u : The time varying state variable u for facilitation
r : The time varying state variable u for depression
psr : The psr (postsynaptic response) is the result of whatever computation is going on in a synapse.
steps2cutoff :

7.27 DynamicStdpSynapse

See DynamicSpikingSynapse and StdpSynapse for details

Read/writable Fields

U : The use parameter of the dynamic synapse
D (sec) : The time constant of the depression of the dynamic synapse
F (sec) : The time constant of the facilitation of the dynamic synapse
u0 : Value of the time varying facilitation state variable u for the first spike
r0 : Value of the time varying depression state variable r for the first spike
back delay (sec) : Delay of dendritic backpropagating spike (the synapse sees the postsynaptic

spike delayed by back delay

42

tauspost : Used for extended rule by Froemke and Dan. See Froemke and Dan (2002). Spike-
timing-dependent synaptic modification induced by natural spike trains. Nature 416 (3/2002).

tauspre : Used for extended rule by Froemke and Dan.
taupos : Timeconstant of exponential decay of positive learning window for STDP.
tauneg : Timeconstant of exponential decay of negative learning window for STDP.
dw :
STDPgap : No learning is performed if |Delta| = |tpost − tpre| < STDPgap.
activeSTDP : Set to 1 to activate STDP-learning. No learning is performed if set to 0.
useFroemkeDanSTDP : activate extended rule by Froemke and Dan (default=1)
Wex : The maximal/minimal weight of the synapse
Aneg : Defines the peak of the negative exponential learning window.
Apos : Defines the peak of the positive exponential learning window.
mupos : Extended multiplicative positive update: dw = (Wex − W)mupos ∗ Apos ∗

exp(−Delta/taupos). Set to 0 for basic update. See Guetig, Aharonov, Rotter and Sompolinsky
(2003). Learning input correlations through non-linear asymmetric Hebbian plasticity. Journal
of Neuroscience 23. pp.3697-3714.

muneg : Extended multiplicative negative update: dw = Wmupos ∗Aneg ∗ exp(Delta/tauneg). Set to
0 for basic update.

tau (sec) : The synaptic time constant τ

W : The weight (scaling factor, strenght, maximal amplitude) of the synapse
delay (sec) : The synaptic transmission delay

Readonly Fields

u : The time varying state variable u for facilitation
r : The time varying state variable u for depression
psr : The psr (postsynaptic response) is the result of whatever computation is going on in a synapse.
steps2cutoff :

7.28 ExpSpikeFilter

Read/writable Fields

m tau1 : Time constant.

Readonly Fields

nChannels : Number of Input channels to filter.
m dt : Time step length.
nValuesPerChannel : Number of values stored for each channel in lastValues.

43

7.29 ExtInputNeuron

Read/writable Fields

Vresting (V) : The resting membrane voltage.
Inoise (A2) : The noise of analog neurons
type : Type (e.g. inhibitory or excitatory) of the neuron
myIndex : ID of external input (is equal index of array)
beReal : Flag if external input is used or normal input

Readonly Fields

Vm (V) : The current output (potential) of this neuron
VmOut : The vlaue wich will actualle be propagated to the outgoing synapses.
nIncoming : Number of incoming synapses
nOutgoing : Number of outgoing synapses

7.30 ExtOutLifNeuron

Read/writable Fields

myIndex : ID of external input (is equal index of array)
beReal : Flag if external input is used or normal input
Cm (F) : The membrane capacity Cm

Rm (Ohm) : The membrane resistance Rm

Vthresh (V) : If Vm exceeds Vthresh a spike is emmited.
Vresting (V) : The resting membrane voltage.
Vreset (V) : The voltage to reset Vm to after a spike.
Vinit (V) : The initial condition for Vm at time t = 0.
Trefract (sec) : The length of the absolute refractory period.
Inoise (A) : The standard deviation of the noise to be added each integration time constant.
Iinject (A) : A constant current to be injected into the LIF neuron.
type : Type (e.g. inhibitory or excitatory) of the neuron

Readonly Fields

Isyn : synaptic input current
nIncoming : Number of incoming synapses
nOutgoing : Number of outgoing synapses
Vm (V) : The membrane voltage Vm

44

7.31 ExtOutLinearNeuron

Read/writable Fields

Iinject (W) : external current injected into neuron
Vinit (V) : initial ’membrane voltage’
Vresting (V) : The resting membrane voltage.
Inoise (A2) : The noise of analog neurons
type : Type (e.g. inhibitory or excitatory) of the neuron
myIndex : ID of external input (is equal index of array)
beReal : Flag if external input is used or normal input

Readonly Fields

Vm (V) : The current output (potential) of this neuron
VmOut : The vlaue wich will actualle be propagated to the outgoing synapses.
nIncoming : Number of incoming synapses
nOutgoing : Number of outgoing synapses

7.32 ExtOutSigmoidalNeuron

Read/writable Fields

thresh (W) : Itot = logsig(beta*(Itot-thresh))
beta (1) : Itot = logsig(beta*(Itot-thresh))
tau m : time constant
A max (1) : the output of a sig neuron is scaled to (0,W max)
I inject (W) : external current injected into neuron
Vm init (V) : initial ’membrane voltage’
Vresting (V) : The resting membrane voltage.
Inoise (A2) : The noise of analog neurons
type : Type (e.g. inhibitory or excitatory) of the neuron
myIndex : ID of external input (is equal index of array)
beReal : Flag if external input is used or normal input

Readonly Fields

Vm (V) : The current output (potential) of this neuron
VmOut : The vlaue wich will actualle be propagated to the outgoing synapses.
nIncoming : Number of incoming synapses
nOutgoing : Number of outgoing synapses

7.33 GaussianAnalogFilter

Read/writable Fields

m std dev : Standard deviation of the filter mask.
nKernelLength : The length of the kernel.

45

Readonly Fields

nChannels : Number of Input channels to filter.

7.34 GVD cT Gate

Read/writable Fields

Vh (V olt) : Inflection point of the sigmoidal function p(V)
Vc (V olt) : Slope of the sigmoidal function p(V)
Ts : Voltage independent time constant τ

nummethod (flag) : Numerical method for the solution of the differential equation: Exp. Euler =
0, Crank-Nicolson = 1

k (1) : The exponent of the gate
p : The state variable.

Readonly Fields

P (1) : The output P (t, V) = p(t, V)k of the gate.

7.35 GVD Gate

Read/writable Fields

Vh (V olt) : Inflection point of the sigmoidal function p(V)
Vc (V olt) : Determines the slope of the sigmoidal function p(V)
Ts : Scale of the time constant τ(V)
Te : Additional exponential factor of the time constant τ(V)
nummethod (flag) : Numerical method for the solution of the differential equation: Exp. Euler =

0, Crank-Nicolson = 1
k (1) : The exponent of the gate
p : The state variable.

Readonly Fields

P (1) : The output P (t, V) = p(t, V)k of the gate.

7.36 HChannel Stuart98

Uses HnGate Stuart98

Reference: Stuart G, Spruston N. Determinants of voltage attenuation in neocortical pyra-
midal neuron dendrites. J Neurosci. 1998 May 15;18(10):3501-10.

46

Read/writable Fields

Ts : Scale of the time constants of the gating variables τ(V)
Gbar (S) : The maximum conductance of the channel;
Erev (V) : The reversal potential Erev of the channel

Readonly Fields

g (S) : The coductance g(t, Vm) of the channel

7.37 HH K Channel

Uses the gate HH n Gate

Read/writable Fields

Gbar (S) : The maximum conductance of the channel;
Erev (V) : The reversal potential Erev of the channel

Readonly Fields

g (S) : The coductance g(t, Vm) of the channel

7.38 HH Na Channel

Uses the gates HH h Gate and HH m Gate

Read/writable Fields

Gbar (S) : The maximum conductance of the channel;
Erev (V) : The reversal potential Erev of the channel

Readonly Fields

g (S) : The coductance g(t, Vm) of the channel

7.39 HHNeuron

The model is based on a CbNeuron and includes the HH K Channel and HH Na Channel for
action potetial generation.

47

Read/writable Fields

Vthresh (V) : If Vm exceeds Vthresh a spike is emmited.
Vreset (V) : The voltage to reset Vm to after a spike.
doReset (flag) : Flag which determines wheter Vm should be reseted after a spike
Trefract (sec) : Length of the absolute refractory period.
nummethod (flag) : Numerical method for the solution of the differential equation: Exp. Euler =

0, Crank-Nicolson = 1
type : Type (e.g. inhibitory or excitatory) of the neuron
Cm (F) : The membrane capacity Cm

Rm (Ohm) : The membrane resistance Rm

Vresting (V) : The resting membrane voltage.
Vinit (V) : Initial condition forVm at time t = 0.
VmScale (V) : Defines the difference between Vresting and the Vthresh for the calculation of the

iongate tables and the ionbuffer Erev.
Inoise (W 2) : Variance of the noise to be added each integration time constant.
Iinject (A) : Constant current to be injected into the CB neuron.

Readonly Fields

Em (V) : The reversal potential of the leakage channel
Vm (V) : The membrane voltage
Isyn : synaptic input current
Gsyn : synaptic input conductance
nIncoming : Number of incoming synapses
nOutgoing : Number of outgoing synapses
nBuffers : Number of ion buffers
nChannels : Number of channels

7.40 HVACAChannel Brown93

Uses HVACAuGate Brown93 and HVACAvGate Brown93

Reference: Brown AM, Schwindt PC, Crill WE. Voltage dependence and activation kinetics of
pharmacologically defined components of the high-threshold calcium current in rat neocortical
neurons. J Neurophysiol. 1993 Oct;70(4):1530-43.

See also: Seamans JK, Durstewitz D, Christie BR, Stevens CF, Sejnowski TJ. Dopamine
D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal cortex neurons.
Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):301-6.

Read/writable Fields

Ts : Scale of the time constants of the gating variables τ(V)
Gbar (S) : The maximum conductance of the channel;
Erev (V) : The reversal potential Erev of the channel

48

Readonly Fields

g (S) : The coductance g(t, Vm) of the channel

7.41 IfbNeuron

see Izhikevich E. ”Which modell to use for cortical spiking neurons?”

Model

A leaky-integrate-and-fire-or burst neuron model is implemented where the membrane poten-
tial Vm of a neuron is given by

τm
dVm

dt
= −(Vm − Vresting) + Rm · (Isyn(t) + Iinject + Inoise)

where τm = Cm ·Rm is the membrane time constant, Rm is the membrane resistance, Isyn(t)
is the current supplied by the synapses, Iinject is a non-specific background current and Inoise

is a Gaussion random variable with zero mean and a given variance noise.

At time t = 0 Vm ist set to Vinit . If Vm exceeds the threshold voltage Vthresh it is reset to
Vreset and hold there for the length Trefract of the absolute refractory period.

Implementation

The exponential Euler method is used for numerical integration.

Read/writable Fields

Cm (F) : The membrane capacity Cm

Rm (Ohm) : The membrane resistance Rm

Vthresh (V) : If Vm exceeds Vthresh a spike is emmited.
Vresting (V) : The resting membrane voltage.
Vreset (V) : The voltage to reset Vm to after a spike.
Vinit (V) : The initial condition for Vm at time t = 0.
Trefract (sec) : The length of the absolute refractory period.
Inoise (A) : The standard deviation of the noise to be added each integration time constant.
Iinject (A) : A constant current to be injected into the LIF neuron.
h : internal parameter h - deinactivation of Ca-channels
tau p : tau p time constant for recovery from inactivation
tau m : tau m time constant for inactivation
Vh : Vh constant for onset of Ca-channel activation.
gh : gh constant for relative impact of Ca-current to leak current (0.5-2)
type : Type (e.g. inhibitory or excitatory) of the neuron

49

Readonly Fields

Vm (V) : The membrane voltage Vm

Isyn : synaptic input current
nIncoming : Number of incoming synapses
nOutgoing : Number of outgoing synapses

7.42 Izhi Neuron

see Izhikevich E. ”Simple model of Spiking Neurons”

Model

A canonical neuron model is implemented where the membrane potential Vm of a neuron is
given by

, Rm is the membrane resistance, Isyn(t) is the current supplied by the synapses, Iinject is
a non-specific background current and Inoise is a Gaussion random variable with zero mean
and a given variance noise.

At time t = 0 Vm ist set to Vinit . If Vm exceeds the threshold voltage Vthresh it is reset to
Vreset and hold there for the length Trefract of the absolute refractory period.

Implementation

The simple Euler method is used for numerical integration.

Read/writable Fields

Cm (F) : The membrane capacity Cm

Rm (Ohm) : The membrane resistance Rm

Vthresh (V) : If Vm exceeds Vthresh a spike is emmited.
Vresting (V) : The resting membrane voltage.
Vreset (V) : The voltage to reset Vm to after a spike.
Vinit (V) : The initial condition for Vm at time t = 0.
Trefract (sec) : The length of the absolute refractory period.
Inoise (A) : The standard deviation of the noise to be added each integration time constant.
Iinject (A) : A constant current to be injected into the LIF neuron.
a : A constant (0.02, 01) describing the coupling of variable u to Vm;.
b : A constant controlling sensitivity og u.
c : A constant controlling reset of Vm (1000*Vreset).
d : A constant controlling reset of u.
type : Type (e.g. inhibitory or excitatory) of the neuron

50

Readonly Fields

Vm (V) : The membrane voltage Vm

Vb : The membrane voltage in millivolt.
Vint : The membrane voltage in millivolt.
u : internal variable
ub : The internal variable u adapted to millivolt and millisecond.
Isyn : synaptic input current
nIncoming : Number of incoming synapses
nOutgoing : Number of outgoing synapses

7.43 KCAChannel Mainen96

Uses KCAnGate Mainen96

Reference: Mainen ZF, Sejnowski TJ. Influence of dendritic structure on firing pattern in
model neocortical neurons. Nature. 1996 Jul 25;382(6589):363-6.

Read/writable Fields

Ts : Scale of the time constants of the gating variables τ(V)
Gbar (S) : The maximum conductance of the channel;
Erev (V) : The reversal potential Erev of the channel

Readonly Fields

g (S) : The coductance g(t, Vm) of the channel

7.44 KChannel Korngreen02

Uses KnGate Korngreen02 and KlGate Korngreen02

Reference: Korngreen A, Sakmann B.Voltage-gated K+ channels in layer 5 neocortical pyra-
midal neurones from young rats: subtypes and gradients. J Physiol. 2000 Jun 15;525 Pt
3:621-39.

Read/writable Fields

Ts : Scale of the time constants of the gating variables τ(V)
Gbar (S) : The maximum conductance of the channel;
Erev (V) : The reversal potential Erev of the channel

Readonly Fields

g (S) : The coductance g(t, Vm) of the channel

51

7.45 LifBurstNeuron

that produces bursts dependent on two additional variables analog to the implementation of
dynamical synapses: see Kaske&Bertschinger ”Traveling wave patterns...”

Model

A nonstandard leaky-integrate-and-fire neuron model is implemented where the membrane
potential Vm of a neuron is given by

τm
dVm

dt
= −(Vm − Vresting) + Rm · (Isyn(t) + Iinject + Inoise)

where τm = Cm ·Rm is the membrane time constant, Rm is the membrane resistance, Isyn(t)
is the current supplied by the synapses, Iinject is a non-specific background current and Inoise

is a Gaussion random variable with zero mean and a given variance noise. Vreset is modulated
by u and r to produce spiking dependent on the previous spike pattern At time t = 0 Vm ist
set toVinit . If Vm exceeds the threshold voltageVthresh it is reset to Vreset and hold there for
the length Trefract of the absolute refractory period.

Implementation

The exponential Euler method is used for numerical integration.

Read/writable Fields

Cm (F) : The membrane capacity Cm

Rm (Ohm) : The membrane resistance Rm

Vthresh (V) : If Vm exceeds Vthresh a spike is emmited.
Vresting (V) : The resting membrane voltage.
Vreset (V) : The default voltage to reset Vm to after a spike.
VBthresh (V) : spike pattern dependent treshold Vm to after a spike.
Vinit (V) : The initial condition for Vm at time t = 0.
Trefract (sec) : The length of the absolute refractory period.
Inoise (A) : The standard deviation of the noise to be added each integration time constant.
Iinject (A) : A constant current to be injected into the LIF neuron.
uB : internal parameter uB - recovery from spike facilitation with time constant FB
rB : internal parameter rB - recovery from spike depression with time constant DB
FB : FB time constant for recovery from facilitation of spike generation.
DB : DB time constant for recovery from depression of spike generation.
UB : UB constant for onset of facilitation of spike generation.
type : Type (e.g. inhibitory or excitatory) of the neuron

Readonly Fields

Vm (V) : The membrane voltage Vm

Isyn : synaptic input current
nIncoming : Number of incoming synapses
nOutgoing : Number of outgoing synapses

52

7.46 LifNeuron

Model

A standard leaky-integrate-and-fire neuron model is implemented where the membrane po-
tential Vm of a neuron is given by

τm
dVm

dt
= −(Vm − Vresting) + Rm · (Isyn(t) + Iinject + Inoise)

where τm = Cm ·Rm is the membrane time constant, Rm is the membrane resistance, Isyn(t)
is the current supplied by the synapses, Iinject is a non-specific background current and Inoise

is a Gaussion random variable with zero mean and a given variance noise.

At time t = 0 Vm ist set to Vinit . If Vm exceeds the threshold voltage Vthresh it is reset to
Vreset and hold there for the length Trefract of the absolute refractory period.

Implementation

The exponential Euler method is used for numerical integration.

Read/writable Fields

Cm (F) : The membrane capacity Cm

Rm (Ohm) : The membrane resistance Rm

Vthresh (V) : If Vm exceeds Vthresh a spike is emmited.
Vresting (V) : The resting membrane voltage.
Vreset (V) : The voltage to reset Vm to after a spike.
Vinit (V) : The initial condition for Vm at time t = 0.
Trefract (sec) : The length of the absolute refractory period.
Inoise (A) : The standard deviation of the noise to be added each integration time constant.
Iinject (A) : A constant current to be injected into the LIF neuron.
type : Type (e.g. inhibitory or excitatory) of the neuron

Readonly Fields

Isyn : synaptic input current
nIncoming : Number of incoming synapses
nOutgoing : Number of outgoing synapses
Vm (V) : The membrane voltage Vm

7.47 linear classification

Read/writable Fields

nClasses : Number of Classes.
range low : Lower bound of algorithms range.
range high : Upper bound of algorithms range.

53

Readonly Fields

nInputRows : Number of rows for input vectors.

7.48 LinearNeuron

Read/writable Fields

Iinject (W) : external current injected into neuron
Vinit (V) : initial ’membrane voltage’
Vresting (V) : The resting membrane voltage.
Inoise (A2) : The noise of analog neurons
type : Type (e.g. inhibitory or excitatory) of the neuron

Readonly Fields

Vm (V) : The current output (potential) of this neuron
VmOut : The vlaue wich will actualle be propagated to the outgoing synapses.
nIncoming : Number of incoming synapses
nOutgoing : Number of outgoing synapses

7.49 LinearPreprocessor

Readonly Fields

nInputRows : Number of rows for input vectors.
nOutputRows : Number of rows for output vectors.

7.50 linear regression

Read/writable Fields

range low : Lower bound of algorithms range.
range high : Upper bound of algorithms range.

Readonly Fields

nInputRows : Number of rows for input vectors.

7.51 MChannel Mainen96

Uses MnGate Mainen96

Reference: Mainen ZF, Sejnowski TJ. Influence of dendritic structure on firing pattern in
model neocortical neurons. Nature. 1996 Jul 25;382(6589):363-6.

54

Read/writable Fields

Ts : Scale of the time constants of the gating variables τ(V)
Gbar (S) : The maximum conductance of the channel;
Erev (V) : The reversal potential Erev of the channel

Readonly Fields

g (S) : The coductance g(t, Vm) of the channel

7.52 MChannel Wang98

From: Wang, H.-S., Pan, Z., Shi, W., Brown, B. S., Wymore, R.S., Cohen, I. S., Dixon, J.
E. and McKinnon, D. (1998) KCNQ2 and KCNQ3Potassium Channel Subunits: Molecular
Correlates of the M-Channel. Science, 282, 1890-1893

Read/writable Fields

Gbar (S) : The maximum conductance of the channel;
Erev (V) : The reversal potential Erev of the channel

Readonly Fields

g (S) : The coductance g(t, Vm) of the channel

7.53 Mean Std Preprocessor

Every row x i of the input vector is transformed into x′
i = (xi − mi)/stdi , where m i and

std i are the mean and standard deviation of the i-th row.

Readonly Fields

nInputRows : Number of rows for input vectors.
nOutputRows : Number of rows for output vectors.

7.54 MexRecorder

Read/writable Fields

commonChannels : Flag: 1 ... output all channels in one matrix (WARNING: no spikes are returned
yet), 0 ... output each recorded field as seperate channel

dt (sec) : The timestep at which an recording should be done (no meaning if recording spikes).
Tprealloc (sec) : Provide your best guess how long the network will be simulated (in simulation

time).
enabled : Flag: 0 ... recorder disabled, 1 ... recoder enabled

55

7.55 NPChannel McCormick02

Uses NPmGate McCormick92

Reference: McCormick DA, Huguenard JR. A model of the electrophysiological properties of
thalamocortical relay neurons. J Neurophysiol 1992 Oct;68(4):1384-400

See also: Alexander D. Protopapas, Michael Vanier and James M. Bower. Chapter 12:
”Simulating Large Networks of Neurons” in Methods in Neuronal Modeling: From Ions to
Networks, 2nd edition, Christof Koch and Idan Segev, eds, MIT Press, Cambridge, Mass.,
1998

Read/writable Fields

Ts : Scale of the time constants of the gating variables τ(V)
Gbar (S) : The maximum conductance of the channel;
Erev (V) : The reversal potential Erev of the channel

Readonly Fields

g (S) : The coductance g(t, Vm) of the channel

7.56 PCAPreprocessor

Readonly Fields

nInputRows : Number of rows for input vectors.
nOutputRows : Number of rows for output vectors.

7.57 Readout

This class implements readouts within the simulation. Readouts take the responses of the
liquid and calculate a new function with these inputs. Readouts can be trained to approximate
some target function. Readouts can be connected to physical models or feedback neurons for
closed-loop simulations. Therefore the interface of readouts is similar to that of synapses.
The output of a readout can be recorded.

Read/writable Fields

enabled : Flag: 0 ... readout disabled, 1 ... readout enabled
offset : Offset of output values.
range : Range of output values.

Readonly Fields

output : Output variable of a readout.

56

7.58 Recorder

This class allows you to record traces of any fields of any object during the simulation. The
recorded traces of an Recorder with handle rec idx can be obtained via

R=csim(’get’,rec_idx,’traces’);

The ecxact form of R depends on the flag commonChannels (see below). Note that the traces
returned always start at time $t=0$ and are recorded at an interval of dt.

In addition a recorder can also record spikes from spike emitting objects. Via a command
like

csim(’connect’,rec_idx,neuron_idx,’spikes’);

the Recorder with handle rec idx is set up to record the spikes form the spike emitting
objects with handles neuron idx.

commonChannels=0 In this case the Matlab array R is a struct array with the only field
channel which is in turn a struct array with the following fields:

• R.channel(j).idx : handle of the object from which field the data was recorded

• R.channel(j).spiking : binary flag (0/1) which determines if data should be interpreted
as spike times or as an analog signal

• R.channel(j).dt : time discretization; for analog signals only

• R.channel(j).data : signal data : vector of the analog values or spike times.

• R.channel(j).fieldName : name of the recorded field

commonChannels=1 In this case ∗∗R has two fields (WARNING: no spikes are returned):

• R.data : A double array where R.data(j,s) is the s -th recorded value of the j -th
field.

• R.info : A struct array where R.info(j).idx is the handle of the object from which
the field R.info(j).fieldName is recorded.

Read/writable Fields

commonChannels : Flag: 1 ... output all channels in one matrix (WARNING: no spikes are returned
yet), 0 ... output each recorded field as seperate channel

dt (sec) : The timestep at which an recording should be done (no meaning if recording spikes).
Tprealloc (sec) : Provide your best guess how long the network will be simulated (in simulation

time).
enabled : Flag: 0 ... recorder disabled, 1 ... recoder enabled

57

7.59 SICChannel Maciokas02

Uses SICmGate Maciokas02 and SIChGate Maciokas02

Reference: Maciokas, J., Goodman, P., Kenyon, J., Accurate Dynamical Model of Interneu-
ronal GABAergic Channel Physiologies

Read/writable Fields

Gbar (S) : The maximum conductance of the channel;
Erev (V) : The reversal potential Erev of the channel

Readonly Fields

g (S) : The coductance g(t, Vm) of the channel

7.60 SigmoidalNeuron

Read/writable Fields

thresh (W) : Itot = logsig(beta*(Itot-thresh))
beta (1) : Itot = logsig(beta*(Itot-thresh))
tau m : time constant
A max (1) : the output of a sig neuron is scaled to (0,W max)
I inject (W) : external current injected into neuron
Vm init (V) : initial ’membrane voltage’
Vresting (V) : The resting membrane voltage.
Inoise (A2) : The noise of analog neurons
type : Type (e.g. inhibitory or excitatory) of the neuron

Readonly Fields

Vm (V) : The current output (potential) of this neuron
VmOut : The vlaue wich will actualle be propagated to the outgoing synapses.
nIncoming : Number of incoming synapses
nOutgoing : Number of outgoing synapses

7.61 SpikingInputNeuron

Read/writable Fields

type : Type (e.g. inhibitory or excitatory) of the neuron

Readonly Fields

nIncoming : Number of incoming synapses
nOutgoing : Number of outgoing synapses

58

7.62 SpikingTeacher

7.63 StaticAnalogCbSynapse

Read/writable Fields

E : Equilibrium potential given by the Nernst equation.
Inoise : The noise of our analog synapses
W : The weight (scaling factor, strenght, maximal amplitude) of the synapse
delay (sec) : The synaptic transmission delay

Readonly Fields

psr : The psr (postsynaptic response) is the result of whatever computation is going on in a synapse.

7.64 StaticAnalogSynapse

Read/writable Fields

Inoise : The noise of our analog synapses
W : The weight (scaling factor, strenght, maximal amplitude) of the synapse
delay (sec) : The synaptic transmission delay

Readonly Fields

psr : The psr (postsynaptic response) is the result of whatever computation is going on in a synapse.

7.65 StaticSpikingCbSynapse

We call a synapse a static synapse if the amplitude of each evoked conductance change is
equal. Here we implement a conductance g(t) of the form g(t) = W · exp(−t/τ) for each spike
which hits the synapse at time t with an amplitude of W and a decay time constant of τ .
The responses of all the spikes are added up linearly.

Read/writable Fields

E : Equilibrium potential given by the Nernst equation.
tau (sec) : The synaptic time constant τ

W : The weight (scaling factor, strenght, maximal amplitude) of the synapse
delay (sec) : The synaptic transmission delay

Readonly Fields

psr : The psr (postsynaptic response) is the result of whatever computation is going on in a synapse.
steps2cutoff :

59

7.66 StaticSpikingSynapse

We call a synapse a static synapse if the amplitude of each postsynaptic response is equal.
Here we implement a synaptic response x(t) of the form x(t) = W · exp(−t/τ) for each spike
which hits the synapse at time t with an amplitude of W and a decay time constant of τ .
The responses of all the spikes are added up linearly.

Read/writable Fields

tau (sec) : The synaptic time constant τ

W : The weight (scaling factor, strenght, maximal amplitude) of the synapse
delay (sec) : The synaptic transmission delay

Readonly Fields

psr : The psr (postsynaptic response) is the result of whatever computation is going on in a synapse.
steps2cutoff :

7.67 StaticStdpSynapse

Read/writable Fields

back delay (sec) : Delay of dendritic backpropagating spike (the synapse sees the postsynaptic
spike delayed by back delay

tauspost : Used for extended rule by Froemke and Dan. See Froemke and Dan (2002). Spike-
timing-dependent synaptic modification induced by natural spike trains. Nature 416 (3/2002).

tauspre : Used for extended rule by Froemke and Dan.
taupos : Timeconstant of exponential decay of positive learning window for STDP.
tauneg : Timeconstant of exponential decay of negative learning window for STDP.
dw :
STDPgap : No learning is performed if |Delta| = |tpost − tpre| < STDPgap.
activeSTDP : Set to 1 to activate STDP-learning. No learning is performed if set to 0.
useFroemkeDanSTDP : activate extended rule by Froemke and Dan (default=1)
Wex : The maximal/minimal weight of the synapse
Aneg : Defines the peak of the negative exponential learning window.
Apos : Defines the peak of the positive exponential learning window.
mupos : Extended multiplicative positive update: dw = (Wex − W)mupos ∗ Apos ∗

exp(−Delta/taupos). Set to 0 for basic update. See Guetig, Aharonov, Rotter and Sompolinsky
(2003). Learning input correlations through non-linear asymmetric Hebbian plasticity. Journal
of Neuroscience 23. pp.3697-3714.

muneg : Extended multiplicative negative update: dw = Wmupos ∗Aneg ∗ exp(Delta/tauneg). Set to
0 for basic update.

tau (sec) : The synaptic time constant τ

W : The weight (scaling factor, strenght, maximal amplitude) of the synapse
delay (sec) : The synaptic transmission delay

60

Readonly Fields

psr : The psr (postsynaptic response) is the result of whatever computation is going on in a synapse.
steps2cutoff :

7.68 Traubs HH K Channel

Used in the TraubsHHNeuron neuron model.

Uses the gate Traubs HH n Gate

gKd = 0.03 S/cm2 EK = -90 mV

Read/writable Fields

Gbar (S) : The maximum conductance of the channel;
Erev (V) : The reversal potential Erev of the channel

Readonly Fields

g (S) : The coductance g(t, Vm) of the channel

7.69 Traubs HH Na Channel

Used in the TraubsHHNeuron neuron model.

Uses the gates Traubs HH h Gate and Traubs HH m Gate.

gNa = 0.1 S/cm2 ENa = 50 mV

Read/writable Fields

Gbar (S) : The maximum conductance of the channel;
Erev (V) : The reversal potential Erev of the channel

Readonly Fields

g (S) : The coductance g(t, Vm) of the channel

7.70 TraubsHHNeuron

This model is a modified version of Traub’s model of Na/K currents for action potentials in
hippocampal pyramidal cells, which was modified from HH equations to fit the kinetics of
those neurons; the rate constants correspond to a temperature of 36 deg C

The model is based on a CbNeuron and includes the Traubs HH K Channel and Traubs -
HH Na Channel for action potetial generation.

INa = gNa ∗ m∧3 ∗ h ∗ (v-ENa) IKd = gKd ∗ n∧4 ∗ (v-EK)

61

m’ = (m inf - m) / tau m h’ = (h inf - h) / tau h n’ = (n inf - n) / tau n

v2 = v - Vtr

alpha m = 0.32 ∗ (13-v2) / (exp((13-v2)/4) - 1) beta m = 0.28 ∗ (v2-40) / (exp((v2-40)/5)
- 1) tau m = 1 / (alpha m + beta m) m inf = alpha m / (alpha m + beta m)

alpha h = 0.128 ∗ exp((17-v2)/18) beta h = 4 / (1 + exp((40-v2)/5)) tau h = 1 / (alpha h
+ beta h) h inf = alpha h / (alpha h + beta h)

alpha n = 0.032 ∗ (15-v2) / (exp((15-v2)/5) - 1) beta n = 0.5 ∗ exp((10-v2)/40) tau n = 1
/ (alpha n + beta n) n inf = alpha n / (alpha n + beta n)

HH parameters:

gNa = 0.1 S/cm2 gKd = 0.03 S/cm2 ENa = 50 mV EK = -90 mV Vtr = -63 mV (adjusts
threshold to around -50 mV)

Read/writable Fields

Vthresh (V) : If Vm exceeds Vthresh a spike is emmited.
Vreset (V) : The voltage to reset Vm to after a spike.
doReset (flag) : Flag which determines wheter Vm should be reseted after a spike
Trefract (sec) : Length of the absolute refractory period.
nummethod (flag) : Numerical method for the solution of the differential equation: Exp. Euler =

0, Crank-Nicolson = 1
type : Type (e.g. inhibitory or excitatory) of the neuron
Cm (F) : The membrane capacity Cm

Rm (Ohm) : The membrane resistance Rm

Vresting (V) : The resting membrane voltage.
Vinit (V) : Initial condition forVm at time t = 0.
VmScale (V) : Defines the difference between Vresting and the Vthresh for the calculation of the

iongate tables and the ionbuffer Erev.
Inoise (W 2) : Variance of the noise to be added each integration time constant.
Iinject (A) : Constant current to be injected into the CB neuron.

Readonly Fields

Em (V) : The reversal potential of the leakage channel
Vm (V) : The membrane voltage
Isyn : synaptic input current
Gsyn : synaptic input conductance
nIncoming : Number of incoming synapses
nOutgoing : Number of outgoing synapses
nBuffers : Number of ion buffers
nChannels : Number of channels

62

7.71 TriangularAnalogFilter

Read/writable Fields

nKernelLength : The length of the kernel.

Readonly Fields

nChannels : Number of Input channels to filter.

7.72 UserAnalogFilter

Read/writable Fields

m weights : User-defined weights.
nKernelLength : The length of the kernel.

Readonly Fields

nChannels : Number of Input channels to filter.

References

[Dayan and Abbott, 2001] Dayan, P. and Abbott, L. (2001). Theoretical Neuroscience:
Computational and Mathematical Modeling of Neural Systems. MIT Press. See also
http://people.brandeis.edu/~abbott/book/.

[Gerstner and Kistler, 2002] Gerstner, W. and Kistler, W. (2002). Spiking Neuron Models.
Cambridge University Press. See also http://diwww.epfl.ch/~gerstner/BUCH.html.

63

http://people.brandeis.edu/~abbott/book/
http://diwww.epfl.ch/~gerstner/BUCH.html

	Preliminaries
	What is CSIM ?
	About this Manual
	Features of the current version
	Getting and Installing CSIM
	Compiling CSIM from the sources

	A short Tutorial
	Creating Objects
	Object Handles
	Setting Fields or Parameters
	Making connections
	Recording
	Setting up the input
	Running the simulation
	Plotting the recorded traces

	Input and Output
	Input Signals
	Output
	Getting results of the last simulation
	Getting the results of a multi-stimulus simulation

	Additional Topics
	How the network is simulated
	Global fields
	Event driven simulation

	Adding your own C++ model classes to CSIM
	Recipe
	Details
	Hints for adding user defined models
	Setting and getting field values of objects
	Implementaion
	Registering classes and fields
	reggen

	CSIM command reference
	Setting up a network simulation
	create
	set
	connect

	Running the network simulation
	reset
	simulate

	Saving, loading and deleting networks
	export
	import
	destroy

	Displaying/Getting information
	get
	list
	version

	CSIM model classe reference
	AChannel_Hoffman97
	AChannel_Korngreen02
	ActiveCaChannel
	ActiveChannel
	AHP_Channel
	AlphaSpikeFilter
	AnalogFeedbackNeuron
	AnalogInputNeuron
	AnalogTeacher
	ArmModel
	bNACNeuron
	bNACOUNeuron
	CaChannel_Yamada98
	cACNeuron
	cACOUNeuron
	CaGate_Yamada98
	CALChannel_Destexhe98
	CbNeuronSt
	CbNeuron
	CbStOuNeuron
	CountSpikeFilter
	DiscretizationPreprocessor
	dNACNeuron
	dNACOUNeuron
	DynamicSpikingCbSynapse
	DynamicSpikingSynapse
	DynamicStdpSynapse
	ExpSpikeFilter
	ExtInputNeuron
	ExtOutLifNeuron
	ExtOutLinearNeuron
	ExtOutSigmoidalNeuron
	GaussianAnalogFilter
	GVD_cT_Gate
	GVD_Gate
	HChannel_Stuart98
	HH_K_Channel
	HH_Na_Channel
	HHNeuron
	HVACAChannel_Brown93
	IfbNeuron
	Izhi_Neuron
	KCAChannel_Mainen96
	KChannel_Korngreen02
	LifBurstNeuron
	LifNeuron
	linear_classification
	LinearNeuron
	LinearPreprocessor
	linear_regression
	MChannel_Mainen96
	MChannel_Wang98
	Mean_Std_Preprocessor
	MexRecorder
	NPChannel_McCormick02
	PCAPreprocessor
	Readout
	Recorder
	SICChannel_Maciokas02
	SigmoidalNeuron
	SpikingInputNeuron
	SpikingTeacher
	StaticAnalogCbSynapse
	StaticAnalogSynapse
	StaticSpikingCbSynapse
	StaticSpikingSynapse
	StaticStdpSynapse
	Traubs_HH_K_Channel
	Traubs_HH_Na_Channel
	TraubsHHNeuron
	TriangularAnalogFilter
	UserAnalogFilter

